Метаданные о научных методах для обеспечения их повторного использования и воспроизводимости результатов

<u>Н.А.Скворцов</u>, Д.О.Брюхов, Л.А.Калиниченко, Д.Ю.Ковалёв, С.А.Ступников

nskv@ipi.ac.ru

RCDL-2013, Ярославль

План

- Науки с интенсивным использованием данных
- Проблема повторного использования научных методов и воспроизводимости результатов
- Пример среды исследований MyExperiment
- Структура потоков работ
- Набор дополнительных метаданных для решения обсуждаемой проблемы
- Реализация прототипа
- Запросы к метаданным
- Выводы

Науки с интенсивным использованием данных

- Науки с интенсивным использованием данных (data-intensive sciences)
 - Новые требования к объёмам и скорости обработки данных
- Изменение парадигмы исследований
 - От поиска данных для решения задачи к анализу больших объёмов данных для нахождения новых знаний
 - The Fourth Paradigm: Data-Intensive Scientific Discovery. T. Hey, et al (Eds). Microsoft Research. – Redmond, 2009.
 - Jim Gray & Alex Szalay
- Сбор данных от инструментов наблюдения или моделирования
- Курирование данных и организация долгосрочного хранения
 - Семантические подходы к представлению данных
 - Эффективность представления и доступа
 - Обеспечение надёжности данных
- Анализ данных
 - Доступность методов, алгоритмов и инструментов обработки данных
 - Простота использования методов
 - Постоянная и всесторонняя обработка больших объёмов данных

Использование новой парадигмы в исследованиях

- Постоянное автоматическое применение широкого ассортимента известных методов
 - Подготовка сырых данных к анализу
 - Нахождение существенных свойств и параметров объектов
 - Классификация объектов
 - Выявление особых объектов, ошибок
 - Проверка научных гипотез
 - Подтверждение или опровержение экспериментальных моделей.
 - Применение научных методов над всеми доступными данными
 - Агрегация
- Предоставление исследователям богатого набора методов анализа и среды исследования для анализа больших объёмов данных
 - Потоки работ для применения методов и поэтапной обработки данных
 - Специфические методы и законы предметной области
 - Аналитические методы: статистика, машинное обучение и др.
- Использование производной информации и методов в последующих исследованиях
 - Воспроизведение тех же результатов другими группами исследователей
 - Применение тех же методов над другими наборами данных
 - Результаты применения научных методов сохраняются и становятся источником данных для работы других методов в данной области и сопряжённых проблемных областях

Повторное использование методов и воспроизводимость результатов

- Помимо накопления научных данных необходимо накапливать реализации научных методов
 - Доступность методов в сообществе
 - Возможность совмещения применения методов
 - Сервисы и потоки работ
- Возможность выбора, совмещения источников данных
- Независимость реализаций методов от источников информации
 - Возможность применения над произвольными данными
- Возможность поиска накопленных методов по различным критериям и их применения
 - Семантический поиск доступных методов в предметной области научного сообщества
 - Семантическое описание входных/выходных параметров, их этапов в потоках работ, данных, передаваемых между этапами
 - Систематизация накопленных данных и методов
 - Развитие спецификаций предметных областей внутри сообществ исследователей
 - Условия и среды воспроизведения
- Надёжность данных и результатов
 - Обеспечение необходимого качества данных
 - Информация о точности и полноте открытых данных, точности и полноте результатов
 - Данные о происхождении исходных данных, методах получения производных данных
 - Сохранение результатов
 - Тестовые наборы исходных данных и результатов для проверки различных ситуаций в работе методов

Примеры проектов

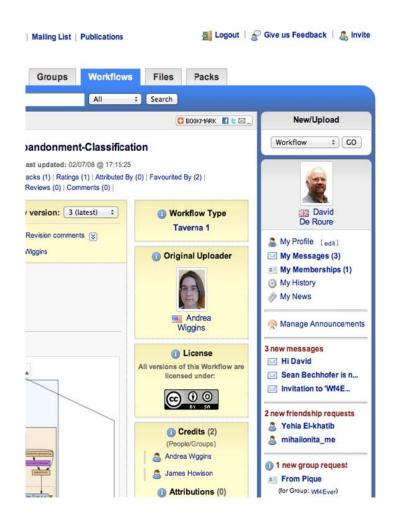
Visier

- Накапливает всевозможные каталоги астрономических данных
- Организует их поиск и поиск в них
- Предоставляет набор наиболее востребованых сервисов, расчёт производных некоторых параметров над конкретными каталогами

Astrogrid

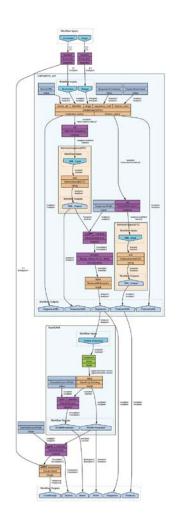
- Реестры каталогов
- Удалённый доступ к данным, к сервисам различного назначения
- Рабочая область

MyExperiment


- Обеспечение взаимодействия пользователей
- Накопление методов: тысячи потоков работ
- Десятки проектов

Wf4ever

- Набор сервисов для поддержки повторного использования потоков работ
- Проверка работоспособности методов и выяснение причин недоступности
- Спецификации происхождения результатов
- Публикация объектов исследования


MyExperiment

- Cepsep MyExperiment
- Социальная сеть поддержки научных экспериментов
- Коллекция объектов исследования
 - Файлы
 - Ссылки
 - Научные потоки работ
- Структура данных (онтология)
 - Пользователи
 - Группы (пользователи, доступ к объектам исследования)
 - Пакеты (объекты исследования)
 - Файлы (данные, документы, ...)
 - Потоки работ (Taverna, ...)
 - Ссылки на внешние ресурсы
 - Аннотации (теги, рейтинги, ...)

Taverna

- Потоки работ магистраль анализа данных
- Управление вызовом сервисов и информационных ресурсов, направление данных между ними
- Описание инструкций обработки данных повторяющихся научных экспериментах
- Плагины
 - Различные сервисы, вызываемые из потоков работ
 - Происхождение
 - Специализированные астрономические сервисы

Структура метаинформации о потоках работ MyExperiment

- Потоки работ
 - Поток работ как объект (Workflow)
 - Поток работ как набор компонентов (Dataflow)
 - Свойство has-component
- Узлы потоков работ
 - WorkflowComponent
 - Свойство belongs-to-workflow
 - Разновидности узлов (суперпонятие NodeComponent)
 - Source входные узлы потоков работ
 - Processor узлы обработки
 - Разновидности процессоров ConstantProcessor, WSDLProcessor, DataflowProcessor
 - Свойство processor-uri
 - Sink выходные улзы
- Соединения компонентов
 - Разновидности компонентов соединения (суперпонятие IOComponent)
 - Input данные входа узла
 - Output данные на выходе узла
 - Link данные, передаваемые между узлами
 - Свойства from-output, to-input

Интерфейсы (API) MyExperiment

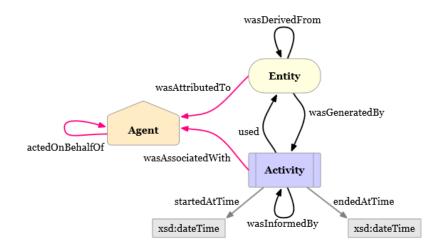
- http-запросы (REST)
 - GET: http://www.myexperiment.org/workflows/16
 Accept: application/rdf+xml
 - ...<Workflow rdf:about="3565"><content-url rdf:resource="wf.t2flow"></Workflow>
- MyJPI Java API (реппер над REST)
- Точка доступа Sparql
 - http://rdf.myexperiment.org/sparql?query=...&forma tting=XML&reasoning=1
 - PREFIX rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns# SELECT DISTINCT ?type WHERE {http://www.myexperiment.org/workflows/16 rdf:type ?type }
 - ...<binding name="type"><uri>http://rdf.myexperiment.org/ontologies/contributions/Workflow</uri></binding>
- Нет описания некоторых метаобъектов
 - компоненты потоков работ

Анализа среды MyExperiment

- Реализованного аннотирования тегами недостаточно
 - Аннотируются только целые потоки работ и файлы, но не компоненты и интерфейсы потоков работ
 - Не обеспечивают семантического подхода
- Нет требования независимости потоков работ от источников данных
 - Многие потоки работ состоят из сервисов доступа к определённым базам данных
- Для обеспечения требований повторного использования методов и вопроизводимости результатов необходим набор дополнительных метаданных
 - На основе доступных API: средствами онтологий и RDF
 - Аннотирование компонентов потоков работ
 - Возможность задания запросов одновременно к метаданным и структуре потоков работ

Требования к дополнительным метаданным

- Семантический подход
 - С описанием предметной области научного метода
 - Понимание машиной и человеком
- Доступность методов
 - Возможность поиска
 - Независимость от источников
- Информация о происхождении и качестве данных и методов
 - Источники
 - Надёжность
 - Точность
 - Идругие
- Описание требований на уровне компонентов
 - Входных и выходных данных
 - Сервисов
 - Используемых информационных ресурсов
 - Данных, тестов
- Включение информации о среде воспроизведения


Онтология предметной области

- На примере астрономической области
- Модули разделов астрономии
 - Астрометрия, фотометрия, спектрометрия, астрофизика, астрономические объекты, кратные системы, затменные двойные, и др.
- Решаемые проблемы
 - Обеспечение семантического поиска в предметной области
 - Аннотация объектов исследования в терминах понятий предм. области
 - Семантика реализуемых методов в целом
 - входы/выходы, пред- и постусловия (по примеру OWL-S)
 - Семантика данных и результатов
 - Семантика ситуаций в наборах тестов
 - Систематизация объектов исследования

- Астрометрия
 - Coordinate
 - CoordinateSystem
 - EquatorialCoordinateSystem
 - CoordinateSystemCo mponent
 - Epoch
 - RightAscension
 - Declination
- Астрономические объекты
 - AstrObject
 - StellarObject
 - CompoundObject
 - Star
 - MultipleStar

Онтология происхождения данных

- Онтология PROV-О
 - Агент
 - человек, организация, программа
 - Сущность
 - описываемая сущность, план, множество, комплект
 - Деятельность
 - Связи
 - Взаимодействие сущностей, агентов и деятельностей
- Рекомендация W3C
- Решаемые проблемы
 - Трекинг применяемых компонентов потоков работ
 - Систематизация версий
 - Контроль источников ошибок
 - Спецификация источников данных и методов
 - Трекинг в результатах тестов
 - Обеспечение достоверности данных и реализаций методов
 - Сравнение работы разных реализаций
 - И другие

Пример метаданных происхождения

Meтод resolve_coordinates, возвращающий координаты по имени астрономического объекта

```
wf3514:resolve_coordinates
  rdf:type prov:SoftwareAgent .
wf3514:resolve_coordinates_outputTable
  rdf:type prov:Entity;
  prov:wasAttributedTo wf3514:resolve_coordinates;
  prov:wasGeneratedBy wf3514: .
```

Онтология качества данных и методов

• Измерения

- Полнота, Точность, Объем, Возраст данных, Целостность,
 Надёжность
- Метрики (примеры сервисов)
 - Полнота относительное количество непустых значений
 - Точность рассчитанная или взятая из данных точность
 - Объем количество кортежей
 - Возраст данных разница даты создания и текущей даты
 - Целостность соответствие набору определённых правил
 - Надёжность рассчитанное на основе значений других метрик

Среда вопроизведения

- Параметры
 - Среда, система, сервисы
 - Модели, методы, алгоритмы, интерфейсы, стандарты
 - Исходный код и средства разработки
 - Документирование
 - Данные и входные параметры
 - Цели и результаты
- Многое из этого выразимо в онтологии происхождения
 - частично дублирует онтологию происхождения
 - Возможно сделать над ней

Результирующая структура необходимых метаданных

- Онтология предметной области исследования
 - Понятия предметной области
 - Связи и знания
- Онтология происхождения данных и методов
 - Агенты
 - Деятельности
 - Сущности
- Онтология качества данных
 - Измерения (dimension)
 - Метрики
- Онтология сред воспроизведения

Реализация

- Ha ontology.ipi.ac.ru
 - Модули онтологии предметной области
 - http://ontology.ipi.ac.ru/ontologies/astront/
 - Онтология качества
 - http://ontology.ipi.ac.ru/ontologies/quality.owl
 - Точка доступа SPARQL (Jena)
 - http://ontology.ipi.ac.ru:3030/
- Онтология PROV
 - http://www.w3.org/ns/prov
- MyExperiment
 - Точка доступа http://rdf.myexperiment.org/sparql
 - Онтологии MyExperiment
 http://rdf.myexperiment.org/ontologies/

Пример совместного запроса к метаданным

```
prefix rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns#">http://www.w3.org/1999/02/22-rdf-syntax-ns#</a>
prefix mecomp: <a href="http://rdf.myexperiment.org/ontologies/components/">http://rdf.myexperiment.org/ontologies/components/</a>
prefix astrobjects: <a href="http://ontology.ipi.ac.ru/ontologies/astrobjects.owl">http://ontology.ipi.ac.ru/ontologies/astrobjects.owl</a>
prefix astrometry: <a href="http://ontology.ipi.ac.ru/ontologies/astrometry.owl">http://ontology.ipi.ac.ru/ontologies/astrometry.owl</a>
prefix prov: <http://www.w3c.org/ns/prov#>
SELECT ?workflow ?output WHERE
  ?input rdf:type astrobjects:AstrObject .
  ?output rdf:type astrometry:Coordinate .
  ?output prov:wasGeneratedBy ?workflow .
  ?output prov:wasAttributedTo ?service .
  SERVICE <a href="http://rdf.myexperiment.org/sparql">http://rdf.myexperiment.org/sparql</a>
    ?input rdf:type mecomp:Source.
    ?output rdf:type mecomp:Sink .
    ?input mecomp:belongs-to-workflow?workflow.
    ?output mecomp:belongs-to-workflow?workflow.
```

Результат запроса

```
<?xml version="1.0"?>
<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head>
  <variable name="workflow"/>
  <variable name="output"/>
</head>
<results>
  <result>
   <binding name="workflow">
    <uri>http://www.myexperiment.org/workflows/3514/versions/2</uri>
   </binding>
   <br/><br/>dinding name="output">
    <uri>http://www.myexperiment.org/workflows/3514/versions/2
         #dataflows/1/components/2</uri>
   </binding>
  </result>
</results>
</sparql>
```

Выводы

- Предложен состав метаданных, необходимых для реализации сервисов обеспечения повторного использования научных методов и воспроизводимости результатов
- Выполнены требования парадигмы исследований наук интенсивным использованием данных
 - Семантизация поиска и спецификаций методов, потоков работ и данных
 - Независимость реализаций методов от источников информации
 - Возможность применения над произвольными данными
 - Обеспечение надёжности и качества данных и результатов исследований
- Результаты могут быть использованы для создания сред поддержки исследований в условиях роста объёма данных и объёма необходимых исследований над ними