
Semi-automatic Data Extraction from Tables

© Nikita Astrakhantsev

ISPRAS

Moscow

astrakhantsev@ispras.ru

© Denis Turdakov

ISPRAS

Moscow

turdakov@ispras.ru

© Natalia Vassilieva

HP Labs

Saint-Petersburg

vassilieva@hp.com

Abstract

This paper describes a novel approach to

automate extraction of useful information from

tables and to record the knowledge procured in

a structured data repository. The approach is

based on modeling a behavior of an expert,

who collects tabular data and maps them to a

predefined relational schema. Experimental

results demonstrate that the proposed approach

predicts expert decisions with high accuracy

and thus significantly minimizes the time

required of an expert for data aggregation.

1 Introduction

Tables are widely used in scientific, financial and other

analytical documents to concisely communicate

information to human readers. A table usually contains

information about objects of the same type. These

objects can be easily perceived by the reader through

content and relations between different table elements

(cells, rows, etc.), because he/she is experienced in table

reading and is able to take in both semantic and

structural information. Sometimes two tables with

exactly the same structure are interpreted completely

different just because of slight difference in the external

context or because the content of some cells differs.

However, it is hard to automate table analysis and

information is extracted mainly by hand by interested

parties. A common scenario used by experts is manual

cell by cell extraction of data from a table into a

relational database, and then using OLAP or other

techniques to generate reports and perform analytics

over these data. Efforts required for manual extraction

are considerable, while the time of experts is always

costly.

There is no end-to-end solution for automatic

information extraction from arbitrary tables. And as it

appears to us, construction of a fully automatic

instrument is hardly feasible. It might be possible to

parse automatically the structure of any table, but

semantic interpretation of tabular data requires the

knowledge of a domain expert. Embley et al. [1]

suggest The Periodic Table of the Elements as an

example of the table requiring semantic knowledge for

interpretation; the authors of this survey also state that it

is easy to contrive other examples “that are challenging

even from a human perspective”.

We present a semi-automatic approach that tracks

actions of a domain expert, when he/she begins to

process a table (map cell data to a relational scheme),

derives regularities/patterns of expert behavior, and

applies them to the rest of the table in order to predict

further mappings.

This paper is organized as follows: In Section 2 we

give an overview of related works. Section 3 discusses

the table format used in our work. Section 4 describes

the general architecture of our prototype, while

Section 5 describes it in details. Section 6 presents our

experimental evaluation. We conclude in Section 7.

2 Related work

Silva et. al [11] survey about 50 works devoted to tables

processing in details. Authors outline several table-

related tasks and corresponding table representation

models, which serve as input and output for these tasks.

The span of tasks goes from location of a table in a

document to semantic interpretation of the information

contained in the table. There are more works focused on

the basic low-level table related tasks than on the more

knowledge based ones. A deep interpretation of the

table is almost always requires context specific

knowledge. Existing solutions for extracting

information are very domain specific and designed for

particular table types.

Zanibbi et. al [15] present the table recognition

literature in terms of the interaction of table models,

observations, transformations, and inferences. Most of

described methods are fully automatic and consider the

task of table processing in isolation from further usage

of the extracted information.

Embley et al. [2] extract data from XML tables and

map them to a given target database schema with 96/85

precision and 93/91 recall (depending on a domain —

car advertisement and cell-phone correspondingly).

However, their approach requires a hand-crafted

ontology, which is costly and, more important, cannot

always be in place due to high specificity of certain

documents.

More recent work of Embley and

Krishnamoorthy [3] transforms CSV or HTML tables

Proceedings of the 15th All-Russian Conference

"Digital Libraries: Advanced Methods and

Technologies, Digital Collections" ― RCDL-2013,

Yaroslavl, Russia, October 14-18 2013.

into a canonical representation in order to obtain a

target representation, one of which is Relational table.

A canonical table representation is based on Header

Paths, a purely syntactic technique that relates headers

and data cells. Further transformation into a target

representation is performed by specially defined

relational algebra. In contrast to the previous approach,

this one does not use any semantic knowledge; also it

demands a user to point out the top-left data cell in

cases where proposed heuristics cannot define such a

cell automatically. Precision of correct Header Paths

construction is about 74%. In [8] the authors evolve this

approach by using interactive tool VeriClick [9], ‘a

macro-enabled spreadsheet interface that provides

ground-truthing, confirmation, correction, and

verification functions for CSV tables’. However, this

tool is used only to locate so-called ‘critical cells’:

corner cells that allows to distinguish header and data

regions in a table.

Vasudevan et. al [14] address a closely related task:

to automate data extraction from financial reports

presented in PDF documents with many tables. The

proposed approach shows good results (95.7% precision

and 78.4% recall), but it requires a quality review stage

and, since it is based on domain knowledge heuristics,

the range of its application is severely limited.

Gatterbauer et al. [4] extract information from web

tables by using two-dimensional visual model provided

by web browsers instead of tree-based (HTML)

representation. Fumarola et al. [5] combine knowledge

about the visual structure of the Web page and the

HTML markup for web lists extraction. Their tool is

applicable for web tables, too; moreover, the authors

evaluate accuracy on the same dataset as Gatterbauer

and report very good quality (more than 99% precision

and recall on table records). But this dataset is domain-

independent, and target format of table analysis is more

general than ours; therefore, it cannot be directly

compared with our method.

Looking at semi-automatic tools, Google Refine
1

should be noted. It is "a power tool for working with

messy data, cleaning it up, transforming it from one

format into another, extending it with web services, and

linking it to databases like Freebase". However, Google

Refine is mostly for data cleansing and is not capable of

performing information extraction and interpretation. It

also cannot track user decisions and anticipate them.

Similarly, Microsoft Excel
2
 can perform such

transformations using formulas and macros, but it

demands user to define these formulas explicitly.

Praedea
3
 is another semi-automatic tool that uses

predefined text-mining models (chosen by user) for

extracting required data from unstructured documents

and mapping them to database or XML scheme. It is not

capable to process a table in case there is no suitable

predefined model for it.

1 http://code.google.com/p/google-refine

2 http://office.microsoft.com/en-us/excel/

3 http://www.praedea.com

Thus, except for the highly specialized programs

like VeriClick and commercial tools like Google Refine

or MS Excel, we are not aware of any research on

interactive information extraction from tables; and the

authors of VeriClick confirm this observation [5]. It

also should be noted that most works try to convert a

table into some more usable format, but not to extract

needed parts of information from a table.

3 Table format

Like other basic notions, 'table' has a lot of different

definitions.

Peterman et al. [10] suggest the following intuitive

definition: “tables have a regular repetitive structure

along one axis so that the data type is determined either

by the horizontal or vertical indices.” The definition

given by Lopresti et al. [7] consists of similar items:

1. 2-D cell assembly for presenting information;

2. Regular, repetitive structure along at least one

axis;

3. Datatype determined by either horizontal or

vertical index.

Tijerino et al. [12] uses standard definition of a

relational table.

In this work we consider a table to be a set of cells

with some text content. In other words, it is the only

property of a table that is used explicitly; other

properties like repetitive structure or the same datatype

in a column or a row are considered by our method

implicitly.

Our prototype takes HTML tables as an input;

therefore we use terminology from HTML in order to

describe cell properties; for example, colspan as a

relative width of a table cell. However, our method does

not depend on any specific properties of HTML format.

We use classical spreadsheet addressing for cells.

For example, A2 of Table 1 is an empty cell in the first

column and the second row with rowspan equal 2.

Table 1: Example of a source table with spreadsheet

coordinates

 A B C D E

1 Secret budget

2 FY 2009 FY 2010

3 Oper. Capital Oper. Capital

4 HP 10 20 30 40

5 Oracle 50 60 10 20

6 Samsung 12 34 56 78

4 General architecture

Assume that a user processes a table step-by-step.

During each step the user selects multiple cells from the

table and maps them to a record in a relational database.

Let us define user feedback as information about

mappings from a single user step. See Table 2 for an

example of the initial user feedback provided by

him/her while processing Table 1.

Table 2: User feedback example: two first columns

represent data about the target relational scheme;

two last ones represent table cell data

Relation

name

Attribute

name

Cell

position

Value

Report Company A4 HP

Report Operating B4 10

Report Financial Year B2 2009

Figure 1 shows the general architecture of the

prototype.

Figure 1: General architecture

The prototype takes as input an HTML table and

enriches it by the predefined Natural Language

Processing pipeline; currently we add only information

about Named Entity types.

Enriched table is further processed by the main part

of the prototype - Table processor on the diagram. It

generates output, which has the same format as the user

feedback, i.e. information about mappings that assumed

to be obtained by the user. This output is reviewed by

the user and he/she returns feedback. The prototype

stores information from the user feedback into the

Target database and uses this feedback in order to

generate the next output. History means a local storage

of the previous feedbacks, including ones from other

tables that were already processed by the user.

Information about previous actions is also used by the

prototype for the output generation.

5 Shift approach

Our approach is based on two observations: (a) each

table is a layout structure for storing similar objects; and

(b) closely located tables (e.g. from the same document

or Web-site) usually share similar structure and context.

A user processes similar objects from the same table

sequentially by repeating similar actions; and this

repetition allows the system to learn and anticipate the

forthcoming actions. The key idea of the approach is to

consider the shift from one user step to the next one.

More precisely, a shift consists of row and column

offsets (possibly zero) for each cell represented in a pair

of sequential user feedbacks. Since any table contains

several objects of the same type and structure, we try to

recognize it by tracking sequential user steps.

Table 3 shows an example of a shift from the first

feedback (underlined words) to the second one (bolded

words). Note that some cells remain fixed, e.g. B2.

Table 3: Shift example: from (HP, 10, 2009) to

(Oracle, 50, 2009)

 A B C D E

1 Secret budget

2 FY 2009 FY 2010

3 Oper. Capital Oper. Capital

4 HP 10 20 30 40

5 Oracle 50 60 10 20

6 Samsung 12 34 56 78

Shift approach is used in different ways depending

on the number of the available user feedbacks. In

section 5.1 we describe a regular phase of our

algorithm: when at least two user feedbacks are

available and we can explicitly compute shifts. Section

5.2 presents the phase when we have only one user

feedback and have to guess a correct shift. Section 5.3

considers the phase when user starts to process a table

and we have to predict his/her actions based on the

previously processed tables.

5.1 Regular phase

After two user steps we can construct a shift by

computing row and column offsets explicitly for every

cell. For example, after two steps of processing Table 1

the following shift is constructed: the first two cells are

shifted down by one cell and the third cell stays at the

same position.

The constructed shift is further applied to cells of

the last user step in order to get new cells and create a

new row in a relational database with the same

relation/attribute information and new values taken

from new cells.

As it was shown in the example above, sometimes

the value returned by the user is not just a text content

of the cell, but its derivative: compare “FY 2009” in

Table 1 with just “2009” in the feedback, Table 2.

Solution of this problem is based on the observation

that shifted cells share similar structure of their content.

We store the way of producing the value from the cell

in form of a regular expression. More precisely, we

have prepared a set of patterns, which should be tested

to match cell content against the value returned by the

user within his/her feedback. Currently there are two

types of patterns: (a) taking a substring of original cell

content, and (b) replacing a substring of original cell

content with another predefined string. Patterns of both

types contain corresponding regular expressions to be

applied to cell content.

Table 4: Example of cell value patterns

Pattern Description Cell value Feedback value

.*::::0 Takes the value as is HP HP

(.*)\s(.*)::::1::::2 Splits by space and tries each part Financial year year

(\d+)::::1 Takes only digits from the content 146% 146

thousand::::000::::ReplaceAll Replaces all words thousand by 3 zeros 45 thousand 45000

Patterns of the first type also contain matching

group numbers to be taken into account; patterns of the

second type contain a replacement string and a key

word ReplaceAll in order to distinguish this type. See

Table 4 for the examples of cell value patterns.

Sequence of colons (::::) serves as a delimiter.

These patterns work as follows. Assume, have a cell

with content “FY 2009” and the corresponding

feedback value is “2009”. We try to apply the first

pattern (.*) to cell content, which means that we simply

take the whole content as is. The result does not match

with the feedback value. Then we try the next pattern

((.*)\s(.*)::::1::::2). The result matches with the

feedback value and we store this pattern for the

corresponding cells of the shift.

If there are more than two steps produced by the user,

then we construct candidate shifts for all paired

combinations of user feedbacks, assess them, and

choose the best shift in order to apply it to cells of the

last user feedback. For example, if there are 3

feedbacks, we construct 3 candidate shifts: 1-to-2, 1-to-

3, and 2-to-3; all 3 candidate shifts are assessed

independently, and the best shift is then applied to the

last, 3
rd

 feedback.

Shift assessment is performed by computing linear

combination of the following 4 features:

Average shift length: normalized sum of lengths of

cells offsets. For the example shift, there are 2 offsets

having length 2 and 1 offset having length 0, so the

feature value is 2/3.

Motivation: people tend to process the table

sequentially, taking closest cells if possible. In other

words, shorter shifts are preferable by users.

We also tried different weights for different

directions, e.g. bigger weight for the right offset than

for the down one, because top-down processing seem to

be more common, but experiments show that different

weights do not introduce any positive effect.

Cells offsets consistency: normalized number of

most common cells offsets. For the shift in the example,

there are 2 types of offsets: 2 down-by-1 offsets and 1

remain-fixed offset, so the feature value is 2/3 again.

Motivation: a shift usually contains similar offsets of

cells, e.g. all 4 cells are shifted down by 1 more often,

then when 2 cells are shifted down by 1 and other 2

cells are shifted down by 2 or right by any number.

Average text similarity: normalized value of string

similarity metrics computed over corresponding

(shifted) cells contents.

Motivation: when we shift one cell to another, both

of them must contain values of the same attribute, and

different values of the same attributes are usually

similar text strings.

To compute such similarity we tried several string

metrics taken from SimMetrics
4
, the best results have

been obtained using Levenstein distance [6]. In

addition, we modified string metric as follows:

1. All digits are considered to be equal characters,

because, as it is written above, we want to

capture strings of the same attribute, or data type,

and difference between numeric strings tells

nothing about difference between attributes. Note

that we do not consider all numbers to be equal,

because much difference in orders of magnitude

can indirectly indicate different attributes.

2. If one of the strings is empty, we use pre-defined

value (0.5): sometimes cell values are missed, for

example, it can mean that the previous value or

some default value should be taken instead.

Unmodified metrics return zero similarity for

such cases, but cell value absence does not

necessarily indicate the difference in attributes.

3. If both strings are long (more than 3 words), we

use pre-defined value (0.8): again, difference in

long texts does not reflect difference in

attributes.

Named entity type consistency: predefined value

for 3 cases depending on named entity types of cells

contents:

1. Named entity types are equal – value is 1;

2. Named entity types are unequal – value is 0;

3. Named entity types are both undefined – value

is 0.5;

Motivation is the same as in the previous feature,

but here we utilize information about named entity

types in order to check attribute consistency. We use a

conditional random field (CRF) model with a

combination of different popular features applied in

supervised named entity recognition [13]. There are 6

supported named entity types: Acronym, Date,

Location, Numeric, Organization, Person.

Coefficients for the linear combination are chosen

experimentally to maximize the accuracy: we test all

possible values from 0 to 1 with step 0.2 so that their

sum equals to 1. We found the best accuracy to be

obtained with 0, 0.4, 0.2, 0.4 correspondingly; the

further granulation does not change the result.

5.2 One User Feedback Phase

Given one user feedback we need a shift to apply it

to this user feedback as it is done in Regular phase.

There are two ways: take a most appropriate shift from

the previously processed tables or construct a shift from

4
 SimMetrics is a Similarity Metric Library provided by

UK Sheffield University

http://sourceforge.net/projects/simmetrics/

scratch. To find the most appropriate shift we check all

stored shifts for applicability, and then assess similarity

of all applicable shifts modified in accordance with the

current table. To assess the modified shift we use the

linear combination as in section 5.1, but coefficients are

re-estimated (0.2, 0, 0.6, 0.2).

This way is very similar to No user feedback phase,

see Section 5.3 for details. In short words, modification

means that we replace contents of cells in the shift by

the contents of the corresponding cells of the current

table. For example, if there is a stored shift (from some

previously processed table) with just one cell offset –

C4-to-C5 with contents “USA”-to-“Russia” – then we

modify the shift so that now contents of the cell offset is

“20”-to-“60”: we take contents of C4 and C5 cells of

Table 1. Note that if the shift contains cell offset like

B1-to-B2 with ordinary colspan and rowspan (all equal

to 1), then such the shift is inapplicable for the Table 1,

because B1 and B2 cells of this table have different

colspans.

If there is no suitable shift, i.e. similarity of the best

shift does not reach a predefined threshold, then we

construct a new one. For this purpose, we iterate over

combinations of all possible offsets of row and column

for each cell. To limit combinatorial explosion we do

not consider offsets above predefined thresholds: 5 for

rows and 3 for columns. Each offset combination is

actually a shift that can be assessed as it is described

above; coefficients are left the same.

5.3 No User Feedback Phase

When no user feedback is available for the current

table, we can use information about previously

processed tables. We store all user feedbacks during

table processing for the case if some of them have a

structure (set of cell positions) appropriate for a new

table. To choose the most appropriate user feedback we

first check all of them for applicability, i.e. current table

must have cells in all cell positions of the user feedback,

and these cells must have the same characteristics —

particularly, colspan and rowspan. Then all applicable

user feedbacks are assessed by constructing and

assessing special "fake" shifts from the stored feedback

to the feedback obtained by applying the stored

feedback structure to current table. Assume we have a

feedback shown in Table 5 from the already processed

Table 6 and we just begin to process Table 1.

Table 5: Example of stored feedback

Relation Attribute Cell Value Cell

pattern

Report Company A4 Lenovo .*::::0

Report Capital B4 105 .*::::0

Report Market

share

C4 33 (\d+)::::1

Then we take a structure of the stored feedback, that

is actually a cell position and a cell pattern, and apply it

to the considered Table 1, see Table 7.

Table 6: Source of stored feedback

 A B C

1 Public budget

2 Company Capital Share of market

3 Dell 100 27%

4 Lenovo 105 33%

Table 7: Applied stored feedback

Relation Attribute Cell Value Cell

pattern

Report Company A4 HP .*::::0

Report Capital B4 10 .*::::0

Report Share of

market

C4 20 (\d+)::::1

After that we construct a shift from the stored

feedback (Table 5) to the obtained feedback (Table 7)

and assess it in the way described in section 3.1 with re-

estimated coefficients (0.2, 0, 0.4, 0.4). Such

assessment allows us to choose the most similar table

among all already processed ones.

Note that the stored feedback from the 3rd row, but

not 4th, is not applicable to Table 1, because A3 cells

have different rowspans.

6 Evaluation

We compiled a set of 30 tables containing financial

reports and a set of more than 150 corresponding user

feedbacks
5
. We use the following test metrics: accuracy,

precision and recall. Accuracy shows the fraction of

outputs that fully match the user feedback: if at least

one value in the tool output is wrong, the whole answer

is considered to be wrong. Precision and recall

characterize the number of correct cell mappings.

Obviously, precision and recall can be much higher than

accuracy, because many answers are partially correct.

Table 8 shows the results for the regular phase; the

2nd and the 3rd rows show efficiency of shift

constructing module and shift choosing module

respectively. We consider the shift constructor to work

correctly if there is a right output (maybe not the chosen

one); for the shift chooser we count only those outputs

when there is a correct shift constructed and thereby the

shift chooser had a chance to choose it.

Table 8: Regular phase results

Total accuracy 74%

Shift constructor accuracy 78%

Shift chooser accuracy 94%

Precision 84%

Recall 80%

Table 9 shows the results for the first 2 phases. Easy

to see that these results depend on feedbacks from

previously processed tables, because each user feedback

is stored during the processing and affects the following

outputs. However, the order of tables inside the

5
 Dataset's URL : http://modis.ispras.ru/datasets/td.zip

document may be valuable; therefore, we shuffle order

of blocks containing tables from the same document.

It is worth mentioning that the results of the first

two phases also depend on stored shifts (feedbacks, for

the first phase) and at the begging of the work, without

any stored shift, we face the problem of cold start. That

is why we add tests with prepared set of 5 simple stored

feedbacks and shifts from other tables.

In addition, we also run tests when all feedbacks and

shifts from the same 30 test tables are stored and used

for the testing. Of course, it is not an absolutely fair test,

because there are stored feedbacks and shifts with

strictly the same text content, but these tests may help to

understand if the mistakes are caused by the problem of

missing stored shifts or the incorrect choice of the

stored shift to be applied.

Table 9: Results for No user feedback and One user

feedback phases

Phase Number

of stored

feedbacks

Accuracy Precision Recall

No user

feedback

0 4% 11% 7%

5 4% 8% 6%

all 16% 28% 25%

One user

feedback

0 43% 91% 90%

5 48% 87% 86%

all 86% 87% 86%

Table 10 shows results for each module for one user

feedback phase. The similarity estimator chooses the

most similar shift among all stored ones. The similarity

threshold is estimated perfectly: if the similarity

estimator chooses an appropriate shift among the stored

ones, then we always choose it and never try to

construct our one instead. The shift constructor works

not bad, it means that our algorithm constructs most of

possible shifts, but the shift chooser makes a lot of

mistakes.

Table 10: Accuracy of modules for one user

feedback phase

Evaluated

module

0 stored

shifts

5 stored

shifts

All stored

shifts

Similarity

threshold

100% 100% 100%

Similarity

estimator

100% 100% 100%

Shift chooser 25% 20% 0%

Shift

constructor

80% 77% 33%

Some mistakes in the regular phase could be

explained by the following: sometimes a user goes from

the top to the bottom of the left part of the table (e.g.

takes all values from the first and the second columns)

and then he/she repeats the similar actions for the right

part (takes all values from the first and the third

columns). Our tool cannot predict a correct shift at the

moment when the user switches to the right part, that is

why results for shift constructor are low.

7 Conclusions and Future Work

In this paper, we focused on the task of semi-automatic

data extraction from tables and mapping them to

relational scheme; we introduce novel approach that

tracks user decisions to predict forthcoming ones; we

evaluated it on our test data.

Shift approach provides general scheme for semi-

automatic table processing, but many problems are out

of scope of this research. One of them is extraction of

value from table cell. In most cases it is sufficient to

take text substrings (see cell B2 in Table 1), but

sometimes certain table cell is actually a set of different

attribute values that should be processed by more

complex methods. For instance, a price list of a

hardware store often contains cells like the following:

HP "Pavilion dm4-2102er" QJ453EA (Core i5

2430M-2.40GHz, 6144MB, HD6470M, WebCam)

Another direction of further research is related to

target scheme: currently we copy information about

relation and attribute for shifted cells, but methods that

are more sophisticated can consider semantics of both

table content and relational scheme.

References

[1] D. W. Embley, M. Hurst, D. Lopresti, G. Nagy.

Table-processing paradigms: a research survey.

International Journal of Document Analysis and

Recognition (IJDAR), 8(2-3), p. 66-86, 2006.

[2] D. W. Embley, C. Tao, S. W. Liddle. Automating

the Extraction of Data from HTML Tables with

Unknown Structure. Knowledge Engineering, 54

(1), p. 3-28, 2005.

[3] D. W. Embley, M. Krishnamoorthy. Factoring

Web Tables. Proceedings of 24th International

Conference on Industrial Engineering and Other

Applications of Applied Intelligent Systems,

p. 253-263, 2011.

[4] F. Fumarola, T. Weninger, R. Barber, D. Malerba,

and J. Han. HyLiEn: a hybrid approach to general

list extraction on the web. Proceedings of the 20th

international conference companion on World wide

web, pp. 35–36, 2011.

[5] W. Gatterbauer, P. Bohunsky, M. Herzog, B.

Krüpl, and B. Pollak. Towards domain-independent

information extraction from web tables.

Proceedings of the 16th international conference on

World Wide Web, pp. 71–80, 2007.

[6] V. I. Levenshtein. Binary codes capable of

correcting deletions, insertions, and reversals.

Soviet Physics Doklady, 10: p. 707–10, 1966.

[7] D. Lopresti, G. Nagy. A tabular survey of

automated table processing. Graphics Recognition

Recent Advances, p. 93-120, 2000.

[8] G. Nagy, S. Seth, D. Jin, D. W. Embley,

S. Machado, and M. Krishnamoorthy. Data

extraction from web tables: The devil is in the

details. Document Analysis and Recognition

(ICDAR), pp. 242–246, 2011.

[9] G. Nagy and M. Tamhankar. VeriClick: an

efficient tool for table format verification.

IS&T/SPIE Electronic Imaging, p. 82970M–

82970M, 2012.

[10] C. Peterman, C.H. Chang, H. Alam. A system for

table under-standing. Proceedings of the

Symposium on Document Im-age Understanding

Technology (SDIUT’97), p. 55–62, 1997.

[11] A. C. Silva, A. M. Jorge, L. Torg. Design of an

end-to-end method to extract information from

tables. International Journal on Document Analysis

and Recognition (8), No. 2-3, p. 144-171, 2006.

[12] Y. A. Tijerino, D. W. Embley, D. W. Lonsdale,

Y. Ding, G. Nagy. Towards ontology generation

from tables. World Wide Web 8, no. 3, 261-285,

2005.

[13] M. Tkachenko, A. Simanovsky. Named entity

recognition: Exploring features. Proceedings of

KONVENS 2012, p. 118-127, 2012.

[14] B. G. Vasudevan, A.G. Parvathy, A. Kumar,

R. Balakrishnan. Automated Knowledge-based

Information Extraction from Financial Reports.

Knowledge Engineering and Management, 7(5),

p. 61-68, 2009.

[15] R. Zanibbi, D. Blostein, J. R. Cordy. A survey of

table recognition: Models, observations,

transformations, and inferences. International

Journal of Document Analysis and Recognition,

7(1), Springer, Heidelberg, p. 1–16, 2004.

	Semi-automatic Data Extraction from Tables
	Abstract
	1 Introduction
	2 Related work
	References

