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Abstract 

This paper describes a novel approach to 

automate extraction of useful information from 

tables and to record the knowledge procured in 

a structured data repository. The approach is 

based on modeling a behavior of an expert, 

who collects tabular data and maps them to a 

predefined relational schema. Experimental 

results demonstrate that the proposed approach 

predicts expert decisions with high accuracy 

and thus significantly minimizes the time 

required of an expert for data aggregation. 

1 Introduction 

Tables are widely used in scientific, financial and other 

analytical documents to concisely communicate 

information to human readers. A table usually contains 

information about objects of the same type. These 

objects can be easily perceived by the reader through 

content and relations between different table elements 

(cells, rows, etc.), because he/she is experienced in table 

reading and is able to take in both semantic and 

structural information. Sometimes two tables with 

exactly the same structure are interpreted completely 

different just because of slight difference in the external 

context or because the content of some cells differs. 

However, it is hard to automate table analysis and 

information is extracted mainly by hand by interested 

parties.  A common scenario used by experts is manual 

cell by cell extraction of data from a table into a 

relational database, and then using OLAP or other 

techniques to generate reports and perform analytics 

over these data. Efforts required for manual extraction 

are considerable, while the time of experts is always 

costly. 

There is no end-to-end solution for automatic 

information extraction from arbitrary tables. And as it 

appears to us, construction of a fully automatic 

instrument is hardly feasible. It might be possible to 

parse automatically the structure of any table, but 

semantic interpretation of tabular data requires the 

knowledge of a domain expert. Embley et al. [1] 

suggest The Periodic Table of the Elements as an 

example of the table requiring semantic knowledge for 

interpretation; the authors of this survey also state that it 

is easy to contrive other examples “that are challenging 

even from a human perspective”. 

We present a semi-automatic approach that tracks 

actions of a domain expert, when he/she begins to 

process a table (map cell data to a relational scheme), 

derives regularities/patterns of expert behavior, and 

applies them to the rest of the table in order to predict 

further mappings. 

This paper is organized as follows: In Section 2 we 

give an overview of related works. Section 3 discusses 

the table format used in our work. Section 4 describes 

the general architecture of our prototype, while 

Section 5 describes it in details. Section 6 presents our 

experimental evaluation. We conclude in Section 7. 

2 Related work 

Silva et. al [11] survey about 50 works devoted to tables 

processing in details. Authors outline several table-

related tasks and corresponding table representation 

models, which serve as input and output for these tasks. 

The span of tasks goes from location of a table in a 

document to semantic interpretation of the information 

contained in the table. There are more works focused on 

the basic low-level table related tasks than on the more 

knowledge based ones. A deep interpretation of the 

table is almost always requires context specific 

knowledge. Existing solutions for extracting 

information are very domain specific and designed for 

particular table types.  

Zanibbi et. al [15] present the table recognition 

literature in terms of the interaction of table models, 

observations, transformations, and inferences. Most of 

described methods are fully automatic and consider the 

task of table processing in isolation from further usage 

of the extracted information. 

Embley et al. [2] extract data from XML tables and 

map them to a given target database schema with 96/85 

precision and 93/91 recall (depending on a domain — 

car advertisement and cell-phone correspondingly). 

However, their approach requires a hand-crafted 

ontology, which is costly and, more important, cannot 

always be in place due to high specificity of certain 

documents.  

More recent work of Embley and 

Krishnamoorthy [3] transforms CSV or HTML tables 
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into a canonical representation in order to obtain a 

target representation, one of which is Relational table. 

A canonical table representation is based on Header 

Paths, a purely syntactic technique that relates headers 

and data cells. Further transformation into a target 

representation is performed by specially defined 

relational algebra. In contrast to the previous approach, 

this one does not use any semantic knowledge; also it 

demands a user to point out the top-left data cell in 

cases where proposed heuristics cannot define such a 

cell automatically. Precision of correct Header Paths 

construction is about 74%. In [8] the authors evolve this 

approach by using interactive tool VeriClick [9], ‘a 

macro-enabled spreadsheet interface that provides 

ground-truthing, confirmation, correction, and 

verification functions for CSV tables’. However, this 

tool is used only to locate so-called ‘critical cells’: 

corner cells that allows to distinguish header and data 

regions in a table. 

Vasudevan et. al [14] address a closely related task: 

to automate data extraction from financial reports 

presented in PDF documents with many tables. The 

proposed approach shows good results (95.7% precision 

and 78.4% recall), but it requires a quality review stage 

and, since it is based on domain knowledge heuristics, 

the range of its application is severely limited. 

Gatterbauer et al. [4] extract information from web 

tables by using two-dimensional visual model provided 

by web browsers instead of tree-based (HTML) 

representation. Fumarola et al. [5] combine knowledge 

about the visual structure of the Web page and the 

HTML markup for web lists extraction. Their tool is 

applicable for web tables, too; moreover, the authors 

evaluate accuracy on the same dataset as Gatterbauer 

and report very good quality (more than 99% precision 

and recall on table records). But this dataset is domain-

independent, and target format of table analysis is more 

general than ours; therefore, it cannot be directly 

compared with our method. 

Looking at semi-automatic tools, Google Refine
1
 

should be noted. It is "a power tool for working with 

messy data, cleaning it up, transforming it from one 

format into another, extending it with web services, and 

linking it to databases like Freebase". However, Google 

Refine is mostly for data cleansing and is not capable of 

performing information extraction and interpretation. It 

also cannot track user decisions and anticipate them. 

Similarly, Microsoft Excel
2
 can perform such 

transformations using formulas and macros, but it 

demands user to define these formulas explicitly. 

Praedea
3
 is another semi-automatic tool that uses 

predefined text-mining models (chosen by user) for 

extracting required data from unstructured documents 

and mapping them to database or XML scheme. It is not 

capable to process a table in case there is no suitable 

predefined model for it. 

                                                           
1 http://code.google.com/p/google-refine 

2 http://office.microsoft.com/en-us/excel/ 

3 http://www.praedea.com
 

Thus, except for the highly specialized programs 

like VeriClick and commercial tools like Google Refine 

or MS Excel, we are not aware of any research on 

interactive information extraction from tables; and the 

authors of VeriClick confirm this observation [5]. It 

also should be noted that most works try to convert a 

table into some more usable format, but not to extract 

needed parts of information from a table. 

3 Table format 

Like other basic notions, 'table' has a lot of different 

definitions.  

Peterman et al. [10] suggest the following intuitive 

definition: “tables have a regular repetitive structure 

along one axis so that the data type is determined either 

by the horizontal or vertical indices.” The definition 

given by Lopresti et al. [7] consists of similar items:  

1. 2-D cell assembly for presenting information;  

2. Regular, repetitive structure along at least one 

axis;  

3. Datatype determined by either horizontal or 

vertical index.  

Tijerino et al. [12] uses standard definition of a 

relational table. 

In this work we consider a table to be a set of cells 

with some text content. In other words, it is the only 

property of a table that is used explicitly; other 

properties like repetitive structure or the same datatype 

in a column or a row are considered by our method 

implicitly. 

Our prototype takes HTML tables as an input; 

therefore we use terminology from HTML in order to 

describe cell properties; for example, colspan as a 

relative width of a table cell. However, our method does 

not depend on any specific properties of HTML format. 

We use classical spreadsheet addressing for cells. 

For example, A2 of Table 1 is an empty cell in the first 

column and the second row with rowspan equal 2. 

 

Table 1: Example of a source table with spreadsheet 

coordinates 

 A B C D E 

1 Secret budget 

2  FY 2009 FY 2010 

3 Oper. Capital Oper. Capital 

4 HP 10 20 30 40 

5 Oracle 50 60 10 20 

6 Samsung 12 34 56 78 

4 General architecture 

Assume that a user processes a table step-by-step. 

During each step the user selects multiple cells from the 

table and maps them to a record in a relational database. 

Let us define user feedback as information about 

mappings from a single user step. See Table 2 for an 

example of the initial user feedback provided by 

him/her while processing Table 1. 

 

 



Table 2: User feedback example: two first columns 

represent data about the target relational scheme; 

two last ones represent table cell data 

Relation 

name 

Attribute 

name 

Cell 

position 

Value 

Report Company A4 HP 

Report Operating B4 10 

Report Financial Year B2 2009 

Figure 1 shows the general architecture of the 

prototype.  

Figure 1: General architecture 

 
 

The prototype takes as input an HTML table and 

enriches it by the predefined Natural Language 

Processing pipeline; currently we add only information 

about Named Entity types.  

Enriched table is further processed by the main part 

of the prototype - Table processor on the diagram. It 

generates output, which has the same format as the user 

feedback, i.e. information about mappings that assumed 

to be obtained by the user. This output is reviewed by 

the user and he/she returns feedback. The prototype 

stores information from the user feedback into the 

Target database and uses this feedback in order to 

generate the next output. History means a local storage 

of the previous feedbacks, including ones from other 

tables that were already processed by the user. 

Information about previous actions is also used by the 

prototype for the output generation. 

5 Shift approach 

Our approach is based on two observations: (a) each 

table is a layout structure for storing similar objects; and 

(b) closely located tables (e.g. from the same document 

or Web-site) usually share similar structure and context. 

A user processes similar objects from the same table 

sequentially by repeating similar actions; and this 

repetition allows the system to learn and anticipate the 

forthcoming actions. The key idea of the approach is to 

consider the shift from one user step to the next one. 

More precisely, a shift consists of row and column 

offsets (possibly zero) for each cell represented in a pair 

of sequential user feedbacks. Since any table contains 

several objects of the same type and structure, we try to 

recognize it by tracking sequential user steps. 

Table 3 shows an example of a shift from the first 

feedback (underlined words) to the second one (bolded 

words). Note that some cells remain fixed, e.g. B2. 

 

Table 3:  Shift example: from (HP, 10, 2009) to 

(Oracle, 50, 2009) 

 A B C D E 

1 Secret budget 

2  FY 2009 FY 2010 

3 Oper. Capital Oper. Capital 

4 HP 10 20 30 40 

5 Oracle 50 60 10 20 

6 Samsung 12 34 56 78 

 

Shift approach is used in different ways depending 

on the number of the available user feedbacks. In 

section 5.1 we describe a regular phase of our 

algorithm: when at least two user feedbacks are 

available and we can explicitly compute shifts. Section 

5.2 presents the phase when we have only one user 

feedback and have to guess a correct shift. Section 5.3 

considers the phase when user starts to process a table 

and we have to predict his/her actions based on the 

previously processed tables. 

5.1 Regular phase  

After two user steps we can construct a shift by 

computing row and column offsets explicitly for every 

cell. For example, after two steps of processing Table 1 

the following shift is constructed: the first two cells are 

shifted down by one cell and the third cell stays at the 

same position. 

The constructed shift is further applied to cells of 

the last user step in order to get new cells and create a 

new row in a relational database with the same 

relation/attribute information and new values taken 

from new cells.  

As it was shown in the example above, sometimes 

the value returned by the user is not just a text content 

of the cell, but its derivative: compare “FY 2009” in 

Table 1 with just “2009” in the feedback, Table 2. 

Solution of this problem is based on the observation 

that shifted cells share similar structure of their content. 

We store the way of producing the value from the cell 

in form of a regular expression. More precisely, we 

have prepared a set of patterns, which should be tested 

to match cell content against the value returned by the 

user within his/her feedback. Currently there are two 

types of patterns: (a) taking a substring of original cell 

content, and (b) replacing a substring of original cell 

content with another predefined string. Patterns of both 

types contain corresponding regular expressions to be 

applied to cell content.  



Table 4: Example of cell value patterns 

Pattern Description Cell value Feedback value 

.*::::0 Takes the value as is HP HP 

(.*)\s(.*)::::1::::2 Splits by space and tries each part Financial year year 

(\d+)::::1 Takes only digits from the content  146% 146 

thousand::::000::::ReplaceAll Replaces all words thousand by 3 zeros 45 thousand 45000 

 

Patterns of the first type also contain matching 

group numbers to be taken into account; patterns of the 

second type contain a replacement string and a key 

word ReplaceAll in order to distinguish this type. See 

Table 4 for the examples of cell value patterns. 

Sequence of colons (::::) serves as a delimiter. 

These patterns work as follows. Assume, have a cell 

with content “FY 2009” and the corresponding 

feedback value is “2009”. We try to apply the first 

pattern (.*) to cell content, which means that we simply 

take the whole content as is. The result does not match 

with the feedback value. Then we try the next pattern 

((.*)\s(.*)::::1::::2). The result matches with the 

feedback value and we store this pattern for the 

corresponding cells of the shift. 

If there are more than two steps produced by the user, 

then we construct candidate shifts for all paired 

combinations of user feedbacks, assess them, and 

choose the best shift in order to apply it to cells of the 

last user feedback. For example, if there are 3 

feedbacks, we construct 3 candidate shifts: 1-to-2, 1-to-

3, and 2-to-3; all 3 candidate shifts are assessed 

independently, and the best shift is then applied to the 

last, 3
rd

 feedback. 

Shift assessment is performed by computing linear 

combination of the following 4 features:  

Average shift length: normalized sum of lengths of 

cells offsets. For the example shift, there are 2 offsets 

having length 2 and 1 offset having length 0, so the 

feature value is 2/3. 

Motivation: people tend to process the table 

sequentially, taking closest cells if possible. In other 

words, shorter shifts are preferable by users. 

We also tried different weights for different 

directions, e.g. bigger weight for the right offset than 

for the down one, because top-down processing seem to 

be more common, but experiments show that different 

weights do not introduce any positive effect. 

Cells offsets consistency: normalized number of 

most common cells offsets. For the shift in the example, 

there are 2 types of offsets: 2 down-by-1 offsets and 1 

remain-fixed offset, so the feature value is 2/3 again. 

Motivation: a shift usually contains similar offsets of 

cells, e.g. all 4 cells are shifted down by 1 more often, 

then when 2 cells are shifted down by 1 and other 2 

cells are shifted down by 2 or right by any number. 

Average text similarity: normalized value of string 

similarity metrics computed over corresponding 

(shifted) cells contents.  

Motivation: when we shift one cell to another, both 

of them must contain values of the same attribute, and 

different values of the same attributes are usually 

similar text strings.  

To compute such similarity we tried several string 

metrics taken from SimMetrics
4
, the best results have 

been obtained using Levenstein distance [6]. In 

addition, we modified string metric as follows: 

1. All digits are considered to be equal characters, 

because, as it is written above, we want to 

capture strings of the same attribute, or data type, 

and difference between numeric strings tells 

nothing about difference between attributes. Note 

that we do not consider all numbers to be equal, 

because much difference in orders of magnitude 

can indirectly indicate different attributes. 

2. If one of the strings is empty, we use pre-defined 

value (0.5): sometimes cell values are missed, for 

example, it can mean that the previous value or 

some default value should be taken instead. 

Unmodified metrics return zero similarity for 

such cases, but cell value absence does not 

necessarily indicate the difference in attributes. 

3. If both strings are long (more than 3 words), we 

use pre-defined value (0.8): again, difference in 

long texts does not reflect difference in 

attributes. 

Named entity type consistency: predefined value 

for 3 cases depending on named entity types of cells 

contents:  

1. Named entity types are equal – value is 1; 

2. Named entity types are unequal – value is 0; 

3. Named entity types are both undefined – value 

is 0.5; 

Motivation is the same as in the previous feature, 

but here we utilize information about named entity 

types in order to check attribute consistency. We use a 

conditional random field (CRF) model with a 

combination of different popular features applied in 

supervised named entity recognition [13]. There are 6 

supported named entity types: Acronym, Date, 

Location, Numeric, Organization, Person. 

Coefficients for the linear combination are chosen 

experimentally to maximize the accuracy: we test all 

possible values from 0 to 1 with step 0.2 so that their 

sum equals to 1. We found the best accuracy to be 

obtained with 0, 0.4, 0.2, 0.4 correspondingly; the 

further granulation does not change the result. 

5.2 One User Feedback Phase  

Given one user feedback we need a shift to apply it 

to this user feedback as it is done in Regular phase. 

There are two ways: take a most appropriate shift from 

the previously processed tables or construct a shift from 

                                                           
4
 SimMetrics is a Similarity Metric Library provided by 

UK Sheffield University 

http://sourceforge.net/projects/simmetrics/ 



scratch. To find the most appropriate shift we check all 

stored shifts for applicability, and then assess similarity 

of all applicable shifts modified in accordance with the 

current table. To assess the modified shift we use the 

linear combination as in section 5.1, but coefficients are 

re-estimated (0.2, 0, 0.6, 0.2).  

This way is very similar to No user feedback phase, 

see Section 5.3 for details. In short words, modification 

means that we replace contents of cells in the shift by 

the contents of the corresponding cells of the current 

table. For example, if there is a stored shift (from some 

previously processed table) with just one cell offset – 

C4-to-C5 with contents “USA”-to-“Russia” – then we 

modify the shift so that now contents of the cell offset is 

“20”-to-“60”: we take contents of C4 and C5 cells of 

Table 1. Note that if the shift contains cell offset like 

B1-to-B2 with ordinary colspan and rowspan (all equal 

to 1), then such the shift is inapplicable for the Table 1, 

because B1 and B2 cells of this table have different 

colspans. 

If there is no suitable shift, i.e. similarity of the best 

shift does not reach a predefined threshold, then we 

construct a new one. For this purpose, we iterate over 

combinations of all possible offsets of row and column 

for each cell. To limit combinatorial explosion we do 

not consider offsets above predefined thresholds: 5 for 

rows and 3 for columns. Each offset combination is 

actually a shift that can be assessed as it is described 

above; coefficients are left the same. 

5.3 No User Feedback Phase  

When no user feedback is available for the current 

table, we can use information about previously 

processed tables. We store all user feedbacks during 

table processing for the case if some of them have a 

structure (set of cell positions) appropriate for a new 

table. To choose the most appropriate user feedback we 

first check all of them for applicability, i.e. current table 

must have cells in all cell positions of the user feedback, 

and these cells must have the same characteristics — 

particularly, colspan and rowspan. Then all applicable 

user feedbacks are assessed by constructing and 

assessing special "fake" shifts from the stored feedback 

to the feedback obtained by applying the stored 

feedback structure to current table. Assume we have a 

feedback shown in Table 5 from the already processed 

Table 6 and we just begin to process Table 1.  

 

Table 5: Example of stored feedback 

Relation  Attribute  Cell  Value Cell 

pattern 

Report Company A4 Lenovo .*::::0 

Report Capital B4 105 .*::::0 

Report Market 

share  

C4 33 (\d+)::::1 

 

Then we take a structure of the stored feedback, that 

is actually a cell position and a cell pattern, and apply it 

to the considered Table 1, see Table 7. 

 

Table 6: Source of stored feedback 

 A B C 

1 Public budget 

2 Company Capital Share of market 

3 Dell 100 27% 

4 Lenovo 105 33% 

 

Table 7: Applied stored feedback 

Relation  Attribute  Cell  Value Cell 

pattern 

Report Company A4 HP .*::::0 

Report Capital B4 10 .*::::0 

Report Share of 

market 

C4 20 (\d+)::::1 

 

After that we construct a shift from the stored 

feedback (Table 5) to the obtained feedback (Table 7) 

and assess it in the way described in section 3.1 with re-

estimated coefficients (0.2, 0, 0.4, 0.4). Such 

assessment allows us to choose the most similar table 

among all already processed ones. 

Note that the stored feedback from the 3rd row, but 

not 4th, is not applicable to Table 1, because A3 cells 

have different rowspans. 

6 Evaluation 

We compiled a set of 30 tables containing financial 

reports and a set of more than 150 corresponding user 

feedbacks
5
. We use the following test metrics: accuracy, 

precision and recall. Accuracy shows the fraction of 

outputs that fully match the user feedback: if at least 

one value in the tool output is wrong, the whole answer 

is considered to be wrong. Precision and recall 

characterize the number of correct cell mappings. 

Obviously, precision and recall can be much higher than 

accuracy, because many answers are partially correct. 

Table 8 shows the results for the regular phase; the 

2nd and the 3rd rows show efficiency of shift 

constructing module and shift choosing module 

respectively. We consider the shift constructor to work 

correctly if there is a right output (maybe not the chosen 

one); for the shift chooser we count only those outputs 

when there is a correct shift constructed and thereby the 

shift chooser had a chance to choose it. 

 
Table 8: Regular phase results 

Total accuracy 74% 

Shift constructor accuracy 78% 

Shift chooser accuracy 94% 

Precision 84% 

Recall 80% 

 

Table 9 shows the results for the first 2 phases. Easy 

to see that these results depend on feedbacks from 

previously processed tables, because each user feedback 

is stored during the processing and affects the following 

outputs. However, the order of tables inside the 

                                                           
5
 Dataset's URL : http://modis.ispras.ru/datasets/td.zip 



document may be valuable; therefore, we shuffle order 

of blocks containing tables from the same document.  

It is worth mentioning that the results of the first 

two phases also depend on stored shifts (feedbacks, for 

the first phase) and at the begging of the work, without 

any stored shift, we face the problem of cold start. That 

is why we add tests with prepared set of 5 simple stored 

feedbacks and shifts from other tables. 

In addition, we also run tests when all feedbacks and 

shifts from the same 30 test tables are stored and used 

for the testing. Of course, it is not an absolutely fair test, 

because there are stored feedbacks and shifts with 

strictly the same text content, but these tests may help to 

understand if the mistakes are caused by the problem of 

missing stored shifts or the incorrect choice of the 

stored shift to be applied.  

 

Table 9: Results for No user feedback and One user 

feedback phases 

Phase Number 

of stored 

feedbacks 

Accuracy Precision Recall 

No user 

feedback 

0 4% 11% 7% 

5 4% 8% 6% 

all 16% 28% 25% 

One user 

feedback 

0 43% 91% 90% 

5 48% 87% 86% 

all 86% 87% 86% 

 

Table 10 shows results for each module for one user 

feedback phase. The similarity estimator chooses the 

most similar shift among all stored ones. The similarity 

threshold is estimated perfectly: if the similarity 

estimator chooses an appropriate shift among the stored 

ones, then we always choose it and never try to 

construct our one instead. The shift constructor works 

not bad, it means that our algorithm constructs most of 

possible shifts, but the shift chooser makes a lot of 

mistakes. 

 

Table 10: Accuracy of modules for one user 

feedback phase 

Evaluated 

module 

0 stored 

shifts 

5 stored 

shifts 

All stored 

shifts 

Similarity 

threshold 

100% 100% 100% 

Similarity 

estimator 

100% 100% 100% 

Shift chooser 25% 20% 0% 

Shift 

constructor 

80% 77% 33% 

 

Some mistakes in the regular phase could be 

explained by the following: sometimes a user goes from 

the top to the bottom of the left part of the table (e.g. 

takes all values from the first and the second columns) 

and then he/she repeats the similar actions for the right 

part (takes all values from the first and the third 

columns). Our tool cannot predict a correct shift at the 

moment when the user switches to the right part, that is 

why results for shift constructor are low. 

7 Conclusions and Future Work 

In this paper, we focused on the task of semi-automatic 

data extraction from tables and mapping them to 

relational scheme; we introduce novel approach that 

tracks user decisions to predict forthcoming ones; we 

evaluated it on our test data.  

Shift approach provides general scheme for semi-

automatic table processing, but many problems are out 

of scope of this research.  One of them is extraction of 

value from table cell. In most cases it is sufficient to 

take text substrings (see cell B2 in Table 1), but 

sometimes certain table cell is actually a set of different 

attribute values that should be processed by more 

complex methods. For instance, a price list of a 

hardware store often contains cells like the following: 

HP "Pavilion dm4-2102er" QJ453EA (Core i5 

2430M-2.40GHz, 6144MB, HD6470M, WebCam) 

Another direction of further research is related to 

target scheme: currently we copy information about 

relation and attribute for shifted cells, but methods that 

are more sophisticated can consider semantics of both 

table content and relational scheme. 

References  

[1] D. W. Embley, M. Hurst, D. Lopresti, G. Nagy. 

Table-processing paradigms: a research survey. 

International Journal of Document Analysis and 

Recognition (IJDAR), 8(2-3), p. 66-86, 2006. 

[2] D. W. Embley, C. Tao, S. W. Liddle. Automating 

the Extraction of Data from HTML Tables with 

Unknown Structure. Knowledge Engineering, 54 

(1), p. 3-28, 2005. 

[3] D. W. Embley, M. Krishnamoorthy. Factoring 

Web Tables. Proceedings of 24th International 

Conference on Industrial Engineering and Other 

Applications of Applied Intelligent Systems, 

p. 253-263, 2011. 

[4] F. Fumarola, T. Weninger, R. Barber, D. Malerba, 

and J. Han. HyLiEn: a hybrid approach to general 

list extraction on the web. Proceedings of the 20th 

international conference companion on World wide 

web, pp. 35–36, 2011. 

[5] W. Gatterbauer, P. Bohunsky, M. Herzog, B. 

Krüpl, and B. Pollak. Towards domain-independent 

information extraction from web tables. 

Proceedings of the 16th international conference on 

World Wide Web, pp. 71–80, 2007. 

[6] V. I. Levenshtein. Binary codes capable of 

correcting deletions, insertions, and reversals. 

Soviet Physics Doklady, 10: p. 707–10, 1966. 

[7] D. Lopresti, G. Nagy. A tabular survey of 

automated table processing. Graphics Recognition 

Recent Advances, p. 93-120, 2000. 

[8] G. Nagy, S. Seth, D. Jin, D. W. Embley, 

S. Machado, and M. Krishnamoorthy. Data 

extraction from web tables: The devil is in the 

details. Document Analysis and Recognition 

(ICDAR), pp. 242–246, 2011. 



[9] G. Nagy and M. Tamhankar. VeriClick: an 

efficient tool for table format verification. 

IS&T/SPIE Electronic Imaging, p. 82970M–

82970M, 2012. 

[10] C. Peterman, C.H. Chang, H. Alam. A system for 

table under-standing. Proceedings of the 

Symposium on Document Im-age Understanding 

Technology (SDIUT’97), p. 55–62, 1997. 

[11] A. C. Silva, A. M. Jorge, L. Torg. Design of an 

end-to-end method to extract information from 

tables. International Journal on Document Analysis 

and Recognition (8), No. 2-3, p. 144-171, 2006. 

[12] Y. A. Tijerino, D. W. Embley, D. W. Lonsdale, 

Y. Ding, G. Nagy. Towards ontology generation 

from tables. World Wide Web 8, no. 3, 261-285, 

2005. 

[13] M. Tkachenko, A. Simanovsky. Named entity 

recognition: Exploring features. Proceedings of 

KONVENS 2012, p. 118-127, 2012. 

[14] B. G. Vasudevan, A.G. Parvathy, A. Kumar, 

R. Balakrishnan. Automated Knowledge-based 

Information Extraction from Financial Reports. 

Knowledge Engineering and Management, 7(5), 

p. 61-68, 2009. 

[15] R. Zanibbi, D. Blostein, J. R. Cordy. A survey of 

table recognition: Models, observations, 

transformations, and inferences. International 

Journal of Document Analysis and Recognition, 

7(1), Springer, Heidelberg, p. 1–16, 2004. 

 

 


	Semi-automatic Data Extraction from Tables
	Abstract
	1 Introduction
	2 Related work
	References

