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Abstract 

Networks have been extensively studied from 
different perspectives in a lot of contexts. 
However, most of research uses a simple 
representation of networks with all edges 
having equal weights. We propose to consider 
networks arising in Internet research with 
weights on the edges. We consider a very 
simple example where weights are assigned to 
edges of the hostgraph based on similarity of 
IP addresses of the hosts. We show that some 
simple host-wise features of this weighted 
hostgraph may contain interesting signal, in 
particular, for ranking. 

1. Introduction      

For a lot of large systems and structures of different 
nature, network can be a good model capable of 
representing a lot of key properties. Examples are well 
known in biology (networks of molecular interactions, 
neuron or cell communication), transportation 
(networks of roads, flights, public transportation roots), 
communication architecture (telephone or Internet 
infrastructure), social interactions (social networks). 
Networks have been extensively studied from many 
different perspectives [1]. In most cases networks are 
represented as simply a collection of vertices and edges 
between them, directed or undirected. However, often 
weights can be assigned to edges, so that the resulting 
weighted network contains more useful information and 
thus is more representative. Even simple weight 
distributions can be quite informative [2]. 

In studying Internet, networks have proved 
especially prominent. At a high level of abstraction, the 
World Wide Web can be represented as a network of all 
pages and hyperlinks between them represented as 
edges. At even a more abstract level, hostgraph is a 
directed graph of hosts (owners) with edges in the graph 
being hyperlinks between pages of the hosts. Probably, 
the most well known example of usage of such a graph 
is the PageRank algorithm for the web graph [3] that 
uses a very basic model of user behavior, where a user 
starts from a random page on the web and then 
randomly surfs via hyperlinks. Historically, this 
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algorithm was a breakthrough in ranking, and later a lot 
of variations were proposed, including applications of 
this algorithm to other graphs, e.g., hostgraph, and 
varying different parameters, e.g., playing with different 
user's initial distributions on pages of the web [4]. 
However, it seems that in all current versions all edges 
(i.e., hyperlinks) are usually assumed to have equal 
weight. Later, as more data became available and 
sophisticated learning-to-rank methods were 
extensively introduced, PageRank and its many 
variations lost their leading positions, as well as many 
other methods that rely only on the information from 
the webgraph.   

At the same time, the underlying structure of the 
Internet at a lower level of abstraction can be 
represented as a collection of IP addresses. 
Understanding the structure of the Internet in this sense 
is not an easy task [5]. An interesting approach to email 
spam detection was recently proposed [6] that is based 
on learning on lightweight features from large 
collections of data. Some of these features are based 
just on IP addresses of senders and do not use any email 
content. This method proved to achieve comparable 
accuracy to existing blacklisting methods. 

We argue that these two kinds of Internet data can 
be integrated. We propose to look at the hostgraph 
where edges are weighted with respect to similarity of 
IP addresses of the source and the destination of the 
edge. The idea is to capture different properties of 
different IP density areas in the hostgraph. We show 
that it can be advantageous to consider certain measures 
on this graph, even very simple ones, with respect to 
such weights. We show that corresponding host-wise 
features may be useful for ranking [7].  

2. Data 

The main our dataset is a hostgraph constructed by one 
of the versions of robot developed in Yandex [8]. 
Vertices of this graph are hosts, i.e., collections of 
documents aggregated from one owner. We say there is 
an edge between two hosts if a document from one host 
has a hyperlink to a document from another host. For 
our experiments, we consider only partial data from the 
older version of the robot, so our graph is far from 
complete representation of the whole Internet, and 
mostly contains hosts from Russian segment of the web. 
Moreover, we clean it further, filtering out large blog 
hosts. Also, we leave only the nodes with at least one 
incoming degree. The final hostgraph for our 
experiments contains about 19M hosts and has total of  
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276M edges (14.7 outcoming edges, i.e., hyperlinks, per 
host on average). 

IP addresses are collected by Yandex robot, with 
one IP address per host. Of course, in reality the 
correspondence between hosts and IP addresses may not 
be one-to-one for a variety of reasons. However, for 
majority of hosts this approximation seems to be 
appropriate, and is suitable for our needs. 

3. Results 

3.1 Computations 

First, we define a measure of similarity between IP 
addresses. We want it to be a number between 0 and 1 
that is 0 for equal IP addresses and is getting larger as 
IP addresses are getting farther apart. We use numeric 
distance, based on the one defined in [6]. If two IP 
addresses are treated as numbers between 0 and 232 – 1, 
let n be the most significant bit where they differ, e.g., 
31 if they differ in the least significant bit, as in 
192.108.0.0 and 192.108.0.1, and 0 if they differ in the 
most significant bit, as in 77.88.21.11 and 
213.180.204.11. Then let a–n be the distance between 
these IP addresses, where a > 1 is some parameter. In 
what follows, we choose a = 1.1 (the idea is to make 
the distance not as sensitive as say when using the 
standard value a = 2; although the results should not 
depend much on this parameter). Now assign weight to 
each edge in the hostgraph to be the above distance 
between source and target IP addresses. 

Now we consider several different host-wise 
features based on the above edge weights. The simplest 
one is the strength of a host IPStrength, and is 
defined as the sum of weights of all incoming edges in 
the graph. (It is more useful to consider only incoming 
edges, i.e., hyperlinks to the host, as they are less 
controllable by the host.) We also consider the average 
of weights of all incoming edges for a host (i.e., 
IPStrength divided by indegree), and denote it by 
IPStrAv. We also denote the host in-degree by 
HostInDegree. 

We want to emphasize that the above features are 
very simply defined and their parameters are chosen 
somewhat arbitrarily. For checking robustness, we tried 
some changes in the above scheme (edge distance 
function, parameters of this function like a above, etc.) 
and obtained comparable results (not shown here). 

3.2 Statistics 

As it is well known, many different “real world” 
networks are scale-free, i.e., their degree distribution 
follows a power law asymptotically [1]. Fig. 1 shows 
distributions for HostInDegree and IPStrength on 
a log-log plane. Indeed, HostInDegree very clearly 
follows the power law distribution, as IPStrength 
does in the range of relatively large values. However, 
the distribution of IPStrength deviates from power 
law in the range of small values of IPStrength (and 
thus small HostInDegree). This difference indicates 

that IPStrength has potential to contain a useful 
signal even in presence of HostInDegree.  

For checking if indeed IPStrength contains a 
useful signal, we use a standard approach in statistics, 
permutation test, in the following way. We compute the 
same measure as IPStrength, for the real hostgraph 
used in the initial computation, but with all IP addresses 
in the hostgraph permuted among hosts uniformly at 
random. We repeat this experiment 100 times and thus 
obtain for each host the null distribution of 100 values 
(for real hostgraph and a new random permutation of IP 
addresses on the whole set of its vertices in each 
experiment). Let us denote the average of this 
distribution for a host as a host feature 
IPStrengthRand. The distribution of 
IPStrengthRand is shown on Fig. 1 (bottom, 
green).

A clear difference between distributions of 
IPStrength and IPStrengthRand, again especially 
in the range of small values, is another indication of 
potential useful signal in IPStrength. Note that 
actually most of the hosts in the hostgraph are in the 

Figure 1: Degree (HostInDegree) and weighted 
degree (IPStrength) distributions on log-log 
scale. Each point shows frequency of the value 
from x axis in the hostgraph. With strength (blue), 
also randomized strength (IPStrengthRand, 
green) is shown for comparison (see text for 
details). 
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range of small IPStrength values: 98.7% of the hosts 
have IPStrength less than 100, and 89.3% of the 
hosts have IPStrength less than 10. 

For each host, we compute the z-score of its 
IPStrength with respect to the distribution of its 
randomized values. If v is the value of IPStrength 
for this host, m and s are the mean and the standard 
deviation of all randomized values for this host, 
respecitvely, then z-score is defined as z = (v – m) / s. 
We denote this feature of a host as IPStrZScore. 
There are 16.7% of the hosts with IPStrZScore < –2, 
that is, in the hostgraph with actual distribution of IP 
addresses there are many hosts (much more than 
expected by chance) with links from the hosts of similar 
IP addresses, as compared with the random distribution 
of IP addresses in the hostgraph. The distribution of z-
scores is shown on Fig. 2. 

 
For finer comparison with randomized values, for 

each host we compute empirical percentile of its 
IPStrength with respect to the null distribution of 
randomized values for this host. As we only have 100 
samples, at the highest precision we can use the 1% and 
99% levels. It turns out that for 14.8% of the hosts their 
IPStrength is significantly lower than 
IPStrengthRand at significance level < 1%, and for 
17.2% of the hosts their IPStrength is significantly 
higher than IPStrengthRand at significance level > 
99%. Thus for 32.0% of the hosts IPStrength 
significantly deviates from its randomized counterpart. 

Overall, this comparison of IPStrength with 
corresponding randomized data indicates that the 
weights defined above are indeed informative for the 
hostgraph and are far from random. 

3.2 Comparison 

It is interesting to compare the IP-similarity-based host-
wise features that we defined above, with other 
common static link-based host-wise features. MatrixNet 
is a new method of machine learning that was 
developed in Yandex [7]. One possible way for feature 
comparison is to compare the contribution while 
learning relevance function for ranking. For a certain 

learning sample where web pages are scored by 
assesors as “good” and “not so good” for certain queries 
[7], we can run MatrixNet on a certain collection of 
features and compare the success of optimizing the 
relevance function using all features and all features 
plus the new feature in question. This gain can serve as 
a proxy for the contribution of the feature to ranking, 
and gains of different features can be compared with 
each other. 

It should be noted, however, that simple features 
such as defined above are unlikely to directly contribute 
to current state-of-the-art ranking pipeline, as it uses a 
complicated highly optimized model with hundreds of 
features, many of them quite sophisticated. Even if the 
features do contribute positively, it is not an easy task to 
detect this contribution, especially in the production 
setting. 

This is why we do a simplified experiment, more as 
proof of concept, to show that the features of the 
hostgraph defined above are of interest. From the whole 
collection of ranking features we choose a 
representative set of 20 static features that depend 
mostly on the hostgraph or the pagegraph, and in certain 
cases on some additional information. This set includes 
HostRank and its variants, quotation index [9], and 
several models of link relevance developed in Yandex. 
Some of these features are among the strongest even if 
compared with the whole collection of all features. We 
compare with this set each of the features IPStrength, 
IPStrAv, IPStrZScore, and also HostInDegree. 
For each of these features we do the following test: for 
two learning samples - with and without the feature - 
we run optimization of relevance using MartixNet. We 
do 200-fold cross-validation where in each fold, 
randomly chosen 90% of the learning sample are used 
for learning and the remaining 10% are used for testing. 
The same subdivision of folds is used in both tests, and 
thus the two 200-length vectors of gain values obtained 
in folds of these two tests can be compared with each 
other. Thus we can compare not only the difference in 
average gain over folds, but also how significantly 
consistent among folds this difference is, as by some 
standard statistical test (we use Wilcoxon rank test). 
This experiment, as described, still has a lot of 
parameters that should be indicated and that we omit 
here as otherwise it would require the detailed 
description of MatrixNet algorithm and properties of 
learning samples used, which is not our focus.  

After repeating this experiment with different 
parameters, we conclude that certain our features are at 
least as good, and some of them even better than those 
static features used for comparison. For example, in one 
reasonable setting, addition of IPStrAv to the sample 
shows the improvement of 0.0062% to the error in 
optimization, and addition of IPStrZScore shows the 
improvement of 0.0060%, and both are significantly 
consistent over folds as by Wilcoxon rank test, p < 
0.0002. For comparison, in exactly the same setting, 
addition of HostInDegree shows improvement of      
–0.0013% (in other words, loss of 0.0013%). In another 
setting, IPStrength also proves useful: it shows 

Figure 2: Strength z-score (IPStrZScore) 
normalized distribution. 

380



relative improvement of 0.0021% (p < 0.037) even after 
HostInDegree is already added to the sample. This 
confirms that IPStrength has useful signal even in 
presence of HostInDegree. 

Overall, observations from these experiments again 
support the idea of considering weighted networks 
instead of plain ones where edges may only be present 
or not present. 

Note that here we choose only 20 representative 
static features to compare with, as without doubt more 
complicated dynamic features can be much more useful 
for ranking, and the effect of static features then is tiny. 
However, we tend to think that even the above 
simplified experiment is good enough for direct 
comparison of certain collections of features. At the 
same time, even static features of the hosts are 
interesting to study, since they are relatively easy to 
compute, for hostgraph, even though looking large, is 
only a tiny portion of all the data that is constantly 
being collected by large search engines like Yandex. 
Unlike many other features useful and optimized 
exclusively for ranking, the ones that we consider here 
could potentially be used for other tasks such as spam 
detection and web crawling. Specialized ranking or 
ranking in absence of some data critical for other more 
efficient features (for example, when developing search 
engine for a new market) could be another application. 

4. Conclusions 

We argue that considering graphs of the web with 
weighted edges may be useful. As a proof of concept, 
we proposed to integrate the hostgraph with IP 
addresses of hosts, namely, to weigh edges in the 
hostgraph with respect to similarity of IP addresses of 
their endpoint hosts. We gave some evidence why such 
consideration may be useful. Potentially, other graphs 
representing the Internet and the web (webpage graph, 
social graph, internal page graph of the host) may be 
interesting to consider with weights assigned to their 
edges, thus integrating with networks all kinds of 
Internet data that now are increasingly being collected. 
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