

Web-based collaborative enterprise for a long-life project must
keep high usability for a lot of years and never lose data sweeping over

☠ hardware failures and migrations ,

☠ OS , server and web - browser software updates ,

☠ changes of objectives (research directions , organization
stucture, user demands etc.),
☠ code defects and human mistakes .

Concern on flexical scalability rather then on application logic
) Iterational development , not Rational development .

High reliability, effective access to actual and hidden information,
agile user interface are required.

2/20

 Guaranteed possibilities required:

 effective system code changes testing in same threads,
 unlimited undo/redo of changes,
 do a lot of various work in different interfaces in a few seconds and

 watch in real time unexpected results, faults and real conflicts ,
 watch any previously accessable data changes faster or slower.

 Time Machine : = information system with absolute memory ,
 smooth self - developance and asyncronouse real - time access .

Collaborative interactive development proper support

3/20

Both ways are dangerous:

SOA , WS -* non-temporal Time Machine

Too much of complexity
(XML parsers unstable , deadlocks

problem , …);
Mission - critical data is unsafe
(may be lost after system crash on
unexpected overload and resource
exhaustion, programmer or system

administrator faults, ...);

Space - expensive ;
innovational risks

(non-relational ,
non-object-relational,

non-postrelational , ...);
compatibility issues ;

4/20

Any data element to be permanently saved as a value with key.
Value is an arbitrary string, serialized structure or unique filename.
Key is a concatenation of

 identifying path to element (should not contain '_'),
 char '_' and saving time in seconds (or milliseconds) from 01.01.1970,
 char '_' and signature (= user ID for explicitely modified data),
 access char.

Record key example:
/edu.botik.ru/univer/2009/algebra1/VasyaPetrov/session/mark_1005433290_VAIvanovV

Record structure

5/20

Access
char

The
value

Unique
name of file
with value

Key of other record with the value
(link for undo/redo, restructuring

and approval)

Testing v f l
Working V F L

In working environment all testing records completely ignored.
In testing environment all the records have effect, but saved records never
can be marked as working) low-cost safe code testing in real system.

Record access

6/20

Data access speed

All record keys are lexicographically sorted and accessed via B+Tree structure.
Access to valid on any given (from the past) moment record value requires
exactly 1 read of B+Tree record (if no undo/redo applied).

OS read caching should work fine:

 • semantically close data is more likely to have close identifying paths
) have great chance to fit the same memory pages to be cached.

 • If commonly prefixed record set is out of need, then the memory pages
will not be read.

Data indexes are based on ordinary records with specific prefixes and should
 also be history-safe and fast.

7/20

Data access speed

All record keys are lexicographically sorted and accessed via B+Tree structure.
Access to valid on any given (from the past) moment record value requires
exactly 1 read of B+Tree record (if no undo/redo applied).

OS read caching should work fine:

 • semantically close data is more likely to have close identifying paths
) have great chance to fit the same memory pages to be cached.

 • If commonly prefixed record set is out of need, then the memory pages
will not be read.

Data indexes are based on ordinary records with specific prefixes and should
 also be history-safe and fast.

8/20

Data access speed

All record keys are lexicographically sorted and accessed via B+Tree structure.
Access to valid on any given (from the past) moment record value requires
exactly 1 read of B+Tree record (if no undo/redo applied).

OS read caching should work fine:

 • semantically close data is more likely to have close identifying paths
) have great chance to fit the same memory pages to be cached.

 • If commonly prefixed record set is out of need, then the memory pages
will not be read.

Data indexes are based on ordinary records with specific prefixes and should
 also be history-safe and fast.

9/20

⇧⇧ Information tree of key prefixesInformation tree of key prefixes

Data access speed

All record keys are lexicographically sorted and accessed via B+Tree structure.
Access to valid on any given (from the past) moment record value requires
exactly 1 read of B+Tree record (if no undo/redo applied).

OS read caching should work fine:

 • semantically close data is more likely to have close identifying paths
) have great chance to fit the same memory pages to be cached.

 • If commonly prefixed record set is out of need, then the memory pages
will not be read.

Data indexes are based on ordinary records with specific prefixes and should
 also be history-safe and fast.

10/20

⇧ Index tree

Data access speed

All record keys are lexicographically sorted and accessed via B+Tree structure.
Access to valid on any given (from the past) moment record value requires
exactly 1 read of B+Tree record (if no undo/redo applied).

OS read caching should work fine:

 • semantically close data is more likely to have close identifying paths
) have great chance to fit the same memory pages to be cached.

 • If commonly prefixed record set is out of need, then the memory pages
will not be readen.

Data indexes are based on ordinary records with specific prefixes and should
 also be history-safe and fast.

11/20

 Access control (low level)

• Identifying paths form the system information tree.
• Any node may be selected to be control (bold circles
on picture).
• Control node path with special prefix forms key
of special record.
• Access restrictions are serialised to the value
of control record.
• Such condition acts on a maximal part of branch
grows from control node until other control nodes
(data context).
• Exactly 1 read of B+Tree record returns access
conditions.

12/20

Server query cycle

• activise or load appropriate executable code versions;
• check server load and perform a reasonable part of

▪fast respond to browser based on a ready data from
database.

▪current data context executions,
▪indexing,
▪database optimisation, …,

 preparing (partial also) results for database;
• send all unsaved data to database;

Results of data context partial executions must only rely on
sly saved data, not on currently available data:

redundancy makes no problem , concurency do.

13/20

Smart browser
• periodically (0.5 sec. ... 10 min.) send to server

asynchronous update requests (including
unsaved data changes if any);

• tune periodicity (e.g. to 0.3 sec. after editing,
2 sec. after link hiting, 20 sec. after short pause,
10 min. after long pause);

• if user change form field,
remember changes as unsaved data;

• on respond
▪update screen fragments if necessary,
▪remember succesfully saved user data not

to send more until other changes occure.

14/20

Running code life cycle
• create/edit/save for personal testing with personal code selections
• test in personal testing environment
• test with current beta testing environment
• propose for beta-testing environment
• approve for beta-testing environment
• approve beta-testing environment for production use
• upgrade system

Unlimited delete/undo/redo and select/approve/abandon

15/20

Step 1: Software selection

General requirements: high stability, high
performance,unlimited flexibility, open source, well-
documented, well-tested, well-supported, convenient API.

Apache2+ModPerl2: expressive featured scripting
language, able to load on-the-fly code from database,
internaly designed not to load same code twice.
TokioCabinet: convenient perl interface, partial key
matching support, concurent data store support.

16/20

Step 2: Database and code loader

General requirements: minimal clear code, high
performance, unlimited flexibility, free version combining
and selection, testing in working system.

If (b.01 tested with c.02 and d.03 tested with c.01) then
possibility to test b.01 with d.03 with both versions of c.

17/20

Step 3: Integrated Programmer interface

General requirements:

• Version descriptions, documentation, testing errors and
user requests are on the version webpage.

• Safe code testing and system updates without server
reload.

• Possibility to revert any changes without loose history.
• Time machine control panel.

18/20

Step 4: Project and conferencing support
Step 5: Highly reliabile distributed system
Step 6???

19/20

