
A Tutorial on the MILOS Multimedia Content Management
System

Giuseppe Amato, Paolo Bolettieri, Franca Debole, Fabrizio Falchi, Claudio Gennaro, Fausto Rabitti, Pasquale Savino

ISTI-CNR, Pisa, Italy
{firstname.secondname}@isti.cnr.it

Abstract
In this paper we present the MILOS1
Multimedia Content Management System.
MILOS supports the storage and content
based retrieval of any multimedia documents
whose descriptions are provided by using
arbitrary metadata models represented in
XML. It provides developers of digital library
applications with functionalities for dealing
with heterogeneous digital documents,
heterogeneous metadata, and metadata schema
mapping.
This paper shows how to configure and use all
MILOS components.

1. Introduction
The Digital Library (DL) technology emerged during
mid 90ties as a combination of different technological
results, mainly in the area of Database Management
and Information Retrieval, and as an application of
these technologies to the management of libraries.
Regrettably, nowadays several Digital Library
Applications (DLA) are monolithic software modules
where the application itself, the content management
software, and the digital library are merged together.
Many systems were built having in mind a specific
application and, in many cases, a specific document
collection, thus resulting in an ad-hoc solution: all
components of the DLA -- the data repository, the
metadata manager, the search and retrieval
components, etc. -- are specific to a given application
and cannot be easily used in other environments. In
these cases there is not possibility of service
personalization/specialization, and adaptation to new
user requirements.
We believe that this situation is mainly due to the lack
of basic building components, tailored to DL
application design, which are standard and general
purpose. For instance, database applications generally
rely on Database Management Systems (DBMS) which
simplify substantially the complexity of designing and
implementing them. It is possible to do the same in the
DL field: it is possible to build a general purpose
Multimedia Content Management System (MCMS)
which offers functionalities specialized for DL

1 This work was partially supported by the DELOS
NoE and the MultiMatch STREP project both funded
by the European Commission under FP6 (Sixth
Framework Programme).

applications (see Figure 1). Different DL applications,
requiring the management of different types of
document format, described by using arbitrary
metadata description models, searchable in many
different modes, can be built on top of such an MCMS.
This MCMS should be able to manage not only
formatted data, like in databases, but also textual data,
using Information Retrieval technology, semi-
structured data, mixed-media data, like structured
presentations, and multimedia data, like images and
audio/video.

Content
Management

System

Digital Library
Application

Digital library
content

Database
Management

System

Database
Application

Database
content

Figure 1 Relationships among layers of DLs and
databases

2. Characteristics of a MCMS for digital
library applications

Digital library applications are document intensive
applications where heterogeneous documents and their
metadata have to be managed efficiently and
effectively.
More in detail, a general purpose MCMS for digital
library applications has to satisfy the following three
basic characteristics:

1. capability of managing different documents
embodied in different media and stored with
different strategies;

2. capability of describing documents by way of
arbitrary, and possibly heterogeneous,
metadata;

mailto:firstname.secondname%7D@isti.cnr.it

3. capability of providing DL applications with
custom/personalised views on the metadata
schema actually handled.

Point 1) implies that no assumption should be taken on
the types of media and encoding used to represent
documents, and especially on the specific strategy used
to store them. This allows applications to be unaware
of the technical details related to multimedia document
management. For instance, textual documents can be
stored in the file system and served to the users using a
normal web server. However, video documents might
need to be maintained in a video server that uses
various storage devices, as for example digital tapes
stored in silos, optical disks, and/or temporary storage
space on arrays of hard disks [10]. In addition, video
documents might be served exploiting specific real-
time continuous media streaming strategies to avoid
hiccups during playback. The DL application should be
designed independently of these issues, which should
be managed transparently by the MCMS. For instance,
changes on the storage strategies should be possible
without changing the DL application software.
Point 2) states that a content management system
should be able to deal with arbitrary metadata. This is
required by the fact that different DL applications,
according to their specific requirements, might need to
use different metadata. Consider that existing archiving
organizations have already their own metadata
schemas, and hardly want to modify them to be
compatible with a specific system. Therefore, a DL
management system should be able to support any
metadata schema without requiring metadata
translation or restrictions on the functionality offered.
There are also cases where the same application needs
to deal with different metadata at the same time. These
different metadata might be needed because the
documents have redundant descriptions in terms of
different metadata, or because the DL application is
dealing with document collection described with
heterogeneous metadata. The last case might occur, for
instance, in case of integration/merging of archives
managed by different organization.
Point 3) makes it possible that the metadata schema
seen by the DL application is different from the
metadata schemas actually stored in the repository of
the content management system. Suppose that an
application was built to deal just with a specific
metadata schema. The MCMS should be able to serve
requests of such an application even if metadata stored
in the repository comply to different schemas.
Metadata schema independence can be obtained by
exploiting techniques of schema mapping. This feature
is especially useful in case of heterogeneous metadata
available at the same time in the repository: the DL
application will refer to just one metadata schema,
relying on the multiple schema mapping performed on
the fly by the MCMS. In addition, this feature allows
different DL applications, which require different
metadata schemas, to share the same MCMS
transparently.

3. MILOS
MILOS is a multimedia content management system
with special functionalities for multimedia document
intensive applications, which satisfies the requirements
discussed in Section 2. The MILOS MCMS has been
developed by using the Web Service technology and,
as depicted in Figure 2, is composed of three main
components: the XML Search Engine (XMLSE)
component, the Multi Media Server (MMS)
component, and the Multi Media Digital Library
service (MMDLS) component. All these components
are implemented as Web Services and interact by using
SOAP.
The XMLSE manages the metadata of the DL. It relies
on our technology for native XML databases [8], and
guarantees the possibility of dealing with arbitrary and
heterogeneous metadata.
The MMS manages the multimedia documents used by
the DL applications, and guarantees the possibility of
transparently dealing with arbitrary document formats
and access strategies.
The MMDLS implements the service logic of the
repository providing developers of DL applications
with a uniform and integrated way of accessing MMS
and XMLSE. In addition, it supports the automatic and
transparent mapping between different metadata
schemas.

 MILOS

MMDLS

MMS XMLSE

XML

SILOS

File
System

RAID

Applications:
Metadata

editor
Ingestion
manag.

Search
Browse

Figure 2 General Architecture of MILOS

4. MILOS quick start:
MILOS distribution runs on Windows 2000, Windows
XP and Linux.
It already contains a web server (Tomcat 5.0 for
JWSDP), however it requires a Java Developer Kit
(JDK 1.5 or above) to run.

Installing MILOS just requires

a) copying the main MILOS directory in your
preferred location of your hard disk;

b) installing the Java Developer Kit (JDK 1.5 or
above)

c) set the JAVA_HOME environment variable to
your JDK home (For instance:
"JAVA_HOME=C:\Programs\Java\jdk1.5.0_0
5")

Examples of entries in the mms.properties file:
test.image_jpeg = jpg,c:\\my-application\\media-objects,http://my.web.server/images/
test.video_mov = mov,c:\\my-application\\video-server-folder,rtsp://my.video.server/videos/

Examples of entries in the mimeFile.properties
video/mpeg = video_mpeg,mpg
application/vnd.ms-powerpoint = application_powerpoint,ppt
video/x-ms-wmv = video_wmv,wmv

Table 1: Examples of configuration of MMS

Once you have installed MILOS, you enter the main
MILOS directory. From this directory you can execute
the following batch files2:

• "run.bat" to run the MILOS system
• "stop.bat" to shutdown the MILOS system

From the milos/etc subdirectory you can execute the
following service batch files:

• "DBBackup.bat"
to create a backup of the XML database into
the milos/milos/.milos/dbBackup directory
(First you have to shutdown MILOS). Note: It
doesn't create a backup of the Multimedia
documents.

• "DBRestore.bat"
to restore the XML database from a previous
database backup (First you have to shutdown
MILOS and destroy the current database by
using "DBDestroy_Metadata.bat"). From the
command line you must specify the database
backup file name; you can find the database
backup files into the milos-

milos/milos/.milos/dbBackup directory
• "DBDestroy_Metadata.bat"

to destroy (delete) the content of the XML
database (First you have to shutdown
MILOS). Note: it doesn't destroy the
multimedia files.

• "DBDestroy_All.bat"
to destroy (delete) all data: XML and
multimedia files. (First you have to shutdown
MILOS)

If you run MILOS for the first time you might want to
configure some indexes for the XML search engine
(see Section 6 on XMLSE), configure the mapping
rules for the MMDSL (see Section 7 on MMDLS), and
configure the mapping rules for the URN (see Section
5 on MMS). Then you are ready to write your
applications or run your existing MILOS application.
In the MILOS-sdk folder of the distribution you can find
some example applications that you can compile and
run. The MILOS distribution is already configured to
support these applications (XMLSE, MMS and
MMDLS are already correctly configured for them).

2 On Linux the batch files are named <name>.sh while
on windows they are named <name>.bat

5. MultiMediaServer: MMS
Different DL applications may have different storage
and access needs. For example, very small DLs might
store documents on standard hard disks, while more
mission critical applications might need to store
documents on arrays of disks, possibly duplicating and
distributing content on several sites. Digital libraries
dealing with huge archives of video documents, might
need to store them on digital tapes maintained in silos,
and to have arrays of disks used as temporary storage
for frequently used documents. In addition, we must
consider that a DL may scale over time, when the
number of documents grows over a certain limit or
faster access is needed.
DL applications might also use different delivery
strategies. For example, a small DL might serve
documents using a normal web server, while heavily
accessed DLs might need to use replication and load
balancing strategies to guarantee high performance
access to content. A video DL might use high
performance video servers to stream videos in real time
to users [10].
The MMS allows the programmers of the DL
applications to be unaware of all these issues. The key
idea is that the DL application should deal with
documents in a uniform way, independently of the
specific strategy used to manage them. Thus, the MMS
identifies all documents with an URN and maintains a
mapping table to associate URNs with actual storage
locations. Applications use the URN to get or store
documents from the MMS, which behaves as a
gateway to the actual repository that stores the
document. The system administrator can define rules
that make use of MIME types, to specify how the
MMS has to store a document of a specific type. For
example, the rule may specify that an MPEG-2[4]
video has to be stored in a tape of a silos, while an
image will be stored in an array of disks.
A special care is taken to deal with the actual access
protocols offered to retrieve the documents. An
application will refer a specific document always using
its URN. However, the retrieval of the document
should be done using an access protocol compatible
with the storage and delivery strategy associated with
the document. For instance, when the document is
stored in a web server it will be retrieved with an
HTTP request. On the other hand, suppose that a video
document is served through a commercial video server

Packages to be imported to use MMS:
import java.rmi.RemoteException; //RMI Exceptions
import javax.xml.rpc.Stub; //Stubs for web services
import it.cnr.isti.milos.dataLogic.MMS.MMS_IF; //Interface of the MMS web service
import it.cnr.isti.milos.dataLogic.MMS.MMS_Impl; //Tool for creating a stub for MMS
import javax.activation.FileDataSource; //Datasources for files
import javax.activation.DataHandler; //To wrap media objects when inserting

Actions to be executed to obtain an instance of MMS (a statefull session aware stub for MMS):
MMS_IF mms = (MMS_IF) new MMS_Impl().getMMS_IFPort();
((Stub)mms)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, “http://localhost:8080/milos-MMS/MMS”);
((Stub)mms)._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, new Boolean(true));

Example of use of an instance of MMS:
String guid="0a783ee65ab33d679aab0cb5e322e64d"; //a GUID to be used to create an URN
String urn="urn:milos:test:image_jpeg:"+guid; //an URN
//create a Data source for the image to be inserted:
FileDataSource fds=new FileDataSource("E:/MILOS-sdk/test-data-sets/images/"+guid+".jpg");
//create a data hander for the object to be inserted:
DataHandler dh=new DataHandler(fds);
//insert, get, update, and delete a digital object in MMS
try{

mms.insert(dh,urn); //insert a digital object
String url=mms.getUrl(urn)); //get the URL from the URN
mms.update(dh_1,urn); //update a digital object
mms.delete(urn); //delete a media object

}catch(RemoteException e){e.printStackTrace();}

Table 2: How to use MMS

such as the Helix Universal Server [3]; in this case the
real time streaming of the video will be obtained using
RTSP [5]. When an application requires to retrieve a
document, the MMS will translate the given URN into
a specific handle (for instance an RTSP URL) that the
application will use to access the document.

5.1. Configuration of MMS
MMS performs basically two tasks:

1) Store media objects
2) Given the URN of a media objects returns the

URL to access it.
The MMS configuration file mms.properties, which
can be found in the milos/milos/.milos directory
specifies the directory where objects should be stored
and the rules used to generate the URL to access them.
MMS arranges media objects in collections of
heterogeneous files. Different collections are stored in
different directories. Different types of files are
distinguished by different mime types. Different mime
types of the same collection are stored in different
directories of the same collection.
When an object is requested to MMS, it returns the
URL that should be used to access it.

MMS is configured inserting in mms.properties rules
of the following form

<collection>.<mimetypeID> =
<File_extension>,<Media_Objects_base_dir>,<Med
ia_Objects_base_URL>

where:
• the <collection> is an identifier for a collection

of (heterogeneous) media objects

• <mimetypeID> is the MILOS identifier for a mime
type (see mimeFile.properties).

• the <file_extension> is the file extension for the
mime type (e.g. jpg, avi, etc...)

• the <Media_Objects_base_dir> is the path of the
directory where these media objects are stored by
MMS

• the <Media_Objects_base_URL> is the base URL
that will be used to access these objects

When a media objects is asked to be inserted in MMS
using the insert method, which we will discuss later, an
URN for the object should be provided as well.
The URN must have the form:

urn:<application>:<collection>:<some_optional_

elements>:<mimetypeID>:<GUID>.

Accordingly MMS stores the media object in the
subdirectory
<collection>/<some_optional_elements>/<mimetyp

eID> of the base directory associated to the rule
corresponding to the <collection>.<mimetypeID>
entry. The file is given name
<mimetypeID><GUID>.<File_extension>.

To request an object to MMS, with methods that we
will discuss later, an URN should be specified. MMS
gives back an URL built as follows:

<Media_Objects_base_URL>/<collection>/<some_op
tional_elements>/<mimetypeID>/<mimetypeID><GUI
D>.<File_extension>

N.B.: if <Media_Objects_base_dir> and/or
<Media_Objects_base_URL> are set "auto", media
objects are stored under the MMSWeb/MMS folder of the

MMS web service application of MILOS and accessed
trough the same web server where MMS is running.
Elsewhere a web server or a media server that provide
access to the objects according to the specified URL
should be installed and configured.
An example of entries for the mms.properties file are
given in Table 1.

An additional configuration file should be used to
configure mime types to be used by MMS. The
configuration file is mimeFile.properties and can be
found in the milos/milos/.milos/ It sets a relation
between a mime type, the <mimetypeID> (required for
MILOS URN), and file extensions. Only the objects
specified in this configuration file can be managed by
MILOS.

Use the following syntax to add new mime types:

<mimetype> = <mimetypeID>, <file extension>

where:
• <mimetype> is the new mime type of the media

object to add (e.g. "image/jpeg",
"application/vnd.ms-powerpoint", etc...)

• <mimetypeID> is a mime type ID used into the
MILOS URN to identify the media objects (e.g.
"image_jpeg", "application_powerpoint", etc...)

• <file extension> if the file extension of the media
object (e.g. "jpg", "ppt", etc...)

An example of entries for the mimeFile.properties
file are given in Table 1

5.2. Using MMS
A java application in order to access the MMS web
service has to import a number of packages. These are
listed in Table 2. An application should import the
exceptions that can be raised during network
operations, the stubs3 for the web services, the
interface of the MMS, the tools for crating stubs of
MMS. Finally, given that the MMS basically stores and
retrieve file, we need tools for dealing with file data
sources and data handlers. Their use will be discussed
below.
In order to create an instance (a stub actually) of MMS
we should create a stub using the MMS stub tools, and
we have to set it to be connected to the correct endpoint
(the web server where the web service is deployed) and
set it to be session aware. These actions are shown in
Table 2.
Table 2 also shows an example of using MMS. In the
example a digital object is inserted in MMS. The
digital object is first represented as a FiledataSource

3 The MMS is a remote web service. In order to use it,
an application has to create a local surrogate, often
called stub, of the web service. A stub has the same
interface of the remote service it represents. It receives
requests from the application and forwards them
(protecting the application from all details concerning
the network communication) to the web service.

and then handled as a DataHandler. After the digital
object is inserted the URL for accessing it can be
obtained by using the getUrl method. A digital object
can be updated and deleted by using respectively the
update and delete methods.
In the next two sessions we report all methods
supported by MMS distinguishing basic methods and
advanced methods.

5.3. Basic MMS methods

insert
void insert(DataHandler dh,
 java.lang.String urn)
 throws java.MMDLS.RemoteException

Insert a media object into the multimedia
repository. The media object must be wrapped
in a DataHandler object
Parameters:
dh - Media object to insert
urn - Related media object URN
Throws:
java.MMDLS.RemoteException

getUrl
java.lang.String getUrl(java.lang.String urn)
 throws
java.rmi.RemoteException

 Get the URL of a media object
Parameters:
urn - media object URN
Returns:
return the URL of the media object
Throws:
java.MMDLS.RemoteException

delete
void delete(java.lang.String urn)
 throws java.rmi.RemoteException

Delete a media object
Parameters:
urn - media object URN
Throws:
java.rmi.RemoteException

update
void update(DataHandler dh,
 java.lang.String urn)
 throws java.rmi.RemoteException

Update a media object into the multimedia
repository.
Parameters:
dh - Media object to insert
urn - URN of the previous media object
Throws:
java.rmi.RemoteException

5.4. Advanced MMS methods

insert2
void insert2(DataHandler dh,
 java.lang.String urn,
 java.lang.String version)
 throws java.rmi.RemoteException

Insert a media object into the multimedia
repository. The media object must be wrapped
in a DataHandler object. A version identifier
is associated with the document. Several
version of the same object can be associated to
the same URN. Versions of objects are
physically stored in a subdirectory of the
directory assigned to the given URN. The
name of the subdirectory is version.
Parameters:
dh - Media object to insert
urn - Related media object URN
version - Media object version (e.g. big,
small, thumbnail, etc...)
Throws:
java.rmi.RemoteException

getUrl2
java.lang.String getUrl2(java.lang.String urn,

java.lang.String version)
 throws
java.rmi.RemoteException

Get the URL of a specific version of a media
object
Parameters:
urn - media object URN
object - version (e.g. big, small, thumbnail,
etc...) of the media object (if it exists)
Returns:
return the URL of the media object
Throws:
java.rmi.RemoteException

delete2
void delete2(java.lang.String urn,
 java.lang.String version)
 throws java.rmi.RemoteException

Delete a specific version of a media object
Parameters:
urn - media object URN
object - version (e.g. big, small, thumbnail,
etc...) of the media object (if it exists)
Throws:
java.rmi.RemoteException

update2
void update2(DataHandler dh,
 java.lang.String urn,
 java.lang.String version)
 throws java.rmi.RemoteException

Update a specific version of a media object
into the multimedia repository.
Parameters:
dh - Media object to insert
urn - URN of the previous media object
version - Media object version (e.g. big,
small, thumbnail, etc...)
Throws:
java.rmi.RemoteException

insertKeyframe
void insertKeyframe(DataHandler dh,
 java.lang.String videoUrn,

java.lang.String keyframeId)
 throws
java.rmi.RemoteException

Insert a video's keyframe object into the
multimedia repository. The video's keyframe
object must be wrapped in a DataHandler
object. Keyframes are physically stored in a
subdirectory of the directory assigned to the
URN of the main video.
Parameters:
dh - Video's keyframe object to insert
videoUrn - Video's URN
keyframeId - ID of the video's keyframe
Throws:
java.rmi.RemoteException

getKeyframeUrl
java.lang.String
getKeyframeUrl(java.lang.String videoUrn,

java.lang.String keyframeId)
 throws
java.rmi.RemoteException

Get the URL of a video's keyframe object
Parameters:
urn - video's URN
keyframeId - ID of the video's keyframe
Returns:
return the URL of the video's keyframe object
Throws:
java.rmi.RemoteException

deleteKeyframe
void getKeyframeUrl(java.lang.String videoUrn,

java.lang.String keyframeId)
 throws
java.rmi.RemoteException

Delete a video's keyframe object
Parameters:
urn - video's URN
keyframeId - ID of the video's keyframe
Throws:
java.rmi.RemoteException

invalidateSession
void invalidateSession()
 throws
java.rmi.RemoteException

Invalidate a HTTP Session
Throws:
java.rmi.RemoteException

6. XML Search Engine: XMLSE
A typical search in a DL is performed on metadata
which describe the document content end their
bibliographic information. Three different approaches
have been adopted until now to support document
retrieval in digital libraries: (a) use of relational
databases; (b) use of information retrieval engines; (c)
full sequential scan of metadata records. Unfortunately,
these approaches did not prove to be effective for DL
applications: designers had to face the problem of

Examples of entries in the index.properties file:
MediaUri = pathindex
Abstract = fulltext
Image = similarityindex

Table 3: Examples of configuration of XMLSE in MILOS version 1.0

choosing the right compromise between efficiency of
the search systems and complexity of the metadata
schema. The result of this compromise is that in many
cases DLs use very simple and flat metadata schemas
such as Dublin Core [1].
Solution (a) requires that metadata should be converted
into relational schemas. This is easy for simple flat
metadata schemas, such as Dublin Core, but it far more
difficult for complex and descriptive metadata
schemas. Moreover, a query on these metadata must be
translated into complex SQL queries at relational level,
resulting in many expensive joins to implement tree
structure traversals. Thus, the resulting search
performance is often unacceptable. However, even with
flat metadata schemas, pure relational databases do not
offer all functionalities needed for an effective
retrieval, such as full text search.
Solution (b) uses full text search engines to index
metadata records. In this case the main emphasis is
devoted to the textual information contained in
metadata fields. Many text search engines offer the
fielded indexing capability, where text contained in
different fields is independently indexed. However,
applications are limited to relatively simple and flat
metadata schemas. In addition, it is not possible to
search by specifying ranges of values.
Solution (c) is very trivial and inefficient. It is not
practicable in applications that pretend to be more than
toy systems. In this case no indexing is performed on
the metadata and the custom search algorithms always
scan the entire metadata set to retrieve searched
information.
MILOS uses a different approach: we have designed
and implemented an enhanced native XML
database/repository system with special features for DL
applications [8]. This is especially justified by the well
known and accepted advantages of representing
metadata as XML documents. Metadata represented
with XML might have arbitrary complex structures,
which allows to deal with complex metadata schemas,
and might be easily exported and imported. Our XML
database can store and retrieve any valid XML
document. No metadata schema or XML schema
definition is needed before inserting an XML
document, except optional index definitions for
performance boosting. Once an arbitrary XML
document has been inserted in the database it can be
immediately retrieved using XQuery. This allows DL
applications to use arbitrary (XML encoded) metadata
schemas and to deal with heterogeneous metadata,
without any constraint on schema design and/or
overhead due to metadata translation.

The MILOS XML search engine supports high
performance search and retrieval on heavily structured
XML documents, relying on specific index structure
[7][12], as well as full text search[11], and feature
similarity search [9]. The system administrator can
associate an index to a specific XML element. For
instance, the tag <abstract> can be associated with a
full text index and to an automatic topic classifier that
automatically indexes it with topics chosen from a
controlled vocabulary. On the other hand, the MPEG-7
[4] <VisualDescriptor> tag can be associated with a
similarity search index structure and with an automatic
visual content classifier. The XQuery language has
been extended with new operators that deal with
approximate match and ranking, in order to deal with
these new search functionality.
In our database every XML document is identified by
an URN. Therefore, relationships and links among
documents - even if they are stored in different
repositories - can be easily and unambiguously
represented.

6.1. Configuration of XMLSE
When you insert an XML file in MILOS, the
underlying XML database indexes it to support
efficient query execution on it.
By default the XML database only indexes the
structure of the XML file for efficient structure query
processing. Faster query processing can be obtained by
asking the XML database to also index the content of
some specific elements.
The way in which indexes are configured depends on
the version of MILOS you are using. Version 1.0 offers
some predefined indexes and very simple configuration
options. Version 2.0 in addition to the predefined
indexes offers a plug-in mechanism that enables new
index to be easily implemented, installed, and
configured.

6.2. Version 1.0
Version 10. of MILOS offers three different types of
indexes:

a) content index for exact match of XML
elements (named "pathindex")

b) content index for text retrieval of XML
elements (named "fulltext")

c) content index for content based retrieval of
elements containing MPEG-7 visual
descriptors (named "similarityindex"). The
<image> element should be associated to the
index.

Examples of entries in the index.properties file:
/Mpeg7/Description/MultimediaContent/Image/MediaLocator/MediaUri = PATHINDEX/YAPI
/newsitem/text = FULLTEXT/LUCENE
/Mpeg7/Description/MultimediaContent/Image = SIMILARITY/AMTREE[GC,EH]

Examples of entries in the indexes.properties file for the AMTREE:
GC = MPEG7CLD
EH = MPEG7EHD

Examples of entries in the modulesFactory.properties file:
FULLTEXT/LUCENE = it.cnr.isti.milos.dataLogic.fulltext.Lucene_IRIndex
SIMILARITY/AMTREE = it.cnr.isti.milos.dataLogic.similarity.SimilarityIndex

Table 4: Examples of configuration of XMLSE in MILOS version 2.0

Configuration for the indexes can be set in the file
"index.properties" file in the milos/milos/.milos
folder, with the following syntax:

<XML element name> = <index name>

For example, to speed-up exact match search on the
name> element you need to add the following entry <

 name = pathindex

To support text search on the <abstract> element you
have to add the following entry
 abstract = fulltext
To use the MPEG-7 visual descriptor index on the
Image> element you have to add the following entry following entry <

 Image = similarityindex Image = similarityindex
An index for exact match search should be used to
speed-up queries where exact match conditions on
specific elements are used. For instance:

An index for exact match search should be used to
speed-up queries where exact match conditions on
specific elements are used. For instance:

for $a in /article for $a in /article
where $a//name= 'John Smith' where $a//name= 'John Smith'
return $a/title return $a/title

runs faster if an exact match index is defined on the
<name> element.
runs faster if an exact match index is defined on the
<name> element.

An index for text search should be used to support
queries where text search on content of specific
elements are used. For instance:

An index for text search should be used to support
queries where text search on content of specific
elements are used. For instance:

for $a in /article for $a in /article
where $a//abstract ~ 'information retrieval' where $a//abstract ~ 'information retrieval'
return $a/title return $a/title

searches for titles of articles whose <abstract>
element is related to information retrieval. If no index
is defined, the ~ operator performs a sub-string match
search using a trivial sequential text scan algorithm.

searches for titles of articles whose <abstract>
element is related to information retrieval. If no index
is defined, the ~ operator performs a sub-string match
search using a trivial sequential text scan algorithm.

An index for similarity search should be used to
support queries where content based retrieval on
content of specific elements containing MPEG-7 visual
descriptors are used. For instance:

An index for similarity search should be used to
support queries where content based retrieval on
content of specific elements containing MPEG-7 visual
descriptors are used. For instance:

for $a in /Mpeg7/Description/MultimediaContent for $a in /Mpeg7/Description/MultimediaContent
where $a/Image ~ ‘—a visual descriptor--’ where $a/Image ~ ‘—a visual descriptor--’
return $a/Image/MediaLocator return $a/Image/MediaLocator

searches for pictures whose content is similar to the
given visual descriptor. If no index is defined, the ~

operator performs a sub-string match search using a
trivial sequential scan algorithm.

searches for pictures whose content is similar to the
given visual descriptor. If no index is defined, the ~

operator performs a sub-string match search using a
trivial sequential scan algorithm.

The fulltext and pathindex indexes can be associated
with several elements (by using several entries in the
index.properties file). Similarity can be just
associated with one element. Table 3 shows an
example of configuration of indexes.

The fulltext and pathindex indexes can be associated
with several elements (by using several entries in the
index.properties file). Similarity can be just
associated with one element. Table 3 shows an
example of configuration of indexes.

6.3. Version 2.0 6.3. Version 2.0
In MILOS version 2.0 index management was
improved. In addition to the predefined indexes
provided in version 2.0, it is possible to easily
implement, install, and configure new fulltext and
similarity indexes.

In MILOS version 2.0 index management was
improved. In addition to the predefined indexes
provided in version 2.0, it is possible to easily
implement, install, and configure new fulltext and
similarity indexes.
In this version indexes are no longer associated with an
element name, now indexes are associated with paths.
In this version indexes are no longer associated with an
element name, now indexes are associated with paths.
The syntax to be used in the "index.properties" file
in the milos/milos/.milos folder is the following:
The syntax to be used in the "index.properties" file
in the milos/milos/.milos folder is the following:

<path> = <typeOfIndex>/<IndexName> <path> = <typeOfIndex>/<IndexName>

where <typeOfIndex> can be PATHINDEX,

FULLTEXT, or SIMILARITY. <IndexName> indicates
the name of the data structure which implement the
index.

where <typeOfIndex> can be PATHINDEX,

FULLTEXT, or SIMILARITY. <IndexName> indicates
the name of the data structure which implement the
index.

For instance For instance

/article/abstract = FULLTEXT/LUCENE /article/abstract = FULLTEXT/LUCENE

specifies that the elements <abstract> contained in
elements <article> should be indexed by LUCENE.
specifies that the elements <abstract> contained in
elements <article> should be indexed by LUCENE.

The predefined indexes of version 2.0 are
PATHINDEX/YAPI for exact match,
FULLTEXT/LUCENE for full text search, and
SIMILARITY/AMTREE for mpeg7 similarity search.

The predefined indexes of version 2.0 are
PATHINDEX/YAPI for exact match,
FULLTEXT/LUCENE for full text search, and
SIMILARITY/AMTREE for mpeg7 similarity search.

In several cases it might be useful to have multiple
instances of the same index structure, and/or to pass
some parameters to the index to customize its
behaviour. In the first case, for instance, one might
want to use different physical indexes (using the same
implementation) to index the content of different
elements. In the second case, for instance, one might
want to specify in a specific query the visual descriptor

In several cases it might be useful to have multiple
instances of the same index structure, and/or to pass
some parameters to the index to customize its
behaviour. In the first case, for instance, one might
want to use different physical indexes (using the same
implementation) to index the content of different
elements. In the second case, for instance, one might
want to specify in a specific query the visual descriptor

Packages to be imported to use XMLSE:
import java.rmi.RemoteException; //RMI Exceptions
import javax.xml.rpc.Stub; //Stubs for web services
import it.cnr.isti.milos.dataLogic.XmlSE.XmlSE_IF; //Interface of the XMLSE web service
import it.cnr.isti.milos.dataLogic. XmlSE.XmlSE_Impl; //Tool for creating a stub for SMLSE

Actions to be executed to obtain an instance of XMLSE (a statefull session aware stub for XMLSE):
XmlSE_IF xmlse=(XmlSE_IF) new XmlSE_Impl().getXmlSE_IFPort();
((Stub)xmlse)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, "http://localhost:8080/milos-
XmlSE/XmlSE");
((Stub)xmlse)._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, new Boolean (true));

Example of use of an instance of XMLSE:
String guid="0a783ee65ab33d679aab0cb5e322e64d"; //a GUID to be used to create an URN
String urn="urn:milos:test:"+guid; //an URN
//a dummy XML document:
String dummyXML = "<a> hello world <c>How are you</c>";
//insert, and search for xml documents:
String xquery= "for $a in /a where $a//b='hello world' return $a/c"; //an XQuery query
try{

xmlse.insert(dummyXML, urn); //insert an XML document in XMLSE
xmlse.search(xquery); //run the query
while(xmlse.next()){ //browse results

System.out.println(xmlse.getContent()); //get a result
}

}catch(RemoteException e){e.printStackTrace();};

Table 5: How to use XMLSE

that has to be used to measure the image similarity. To
support this, the syntax used in the
"index.properties" file in the milos/milos/.milos
folder, to define FULLTEXT and SIMILARITY
indexes can also be the following:

<path>=<typeOfIndex>/<IndexName>[(instanceName
OrParameter,)*]

where instanceNameOrParameter can be a label
known to the index structure identified by
<typeOfIndex>/<IndexName>. An example of entries
in the index.properties file is shown in Table 4.
Among the predefined indexes, this possibility
currently can be used only with the
SIMILARITY/AMTREE predefined index. For
instance

path1 = SIMILARITY/AMTREE[GC,EH]

specifies that the content of path1 should be indexed
by the AMTREE and that the “GC”, and “EH” labels
are sent to the index as well, to decide what to do with
the received content. The specific behaviour of the
AMTREE in correspondence of the label MUST be
configured by using the “indexes.properties” file
contained in the
milos/milos/.milos/similarity/amtree folder. The
syntax that can be used here is the follwing:

<label> = <feature>

where <feature>can be MPEG7CLD (colour),
MPEG7CSD (colour structure) , MPEG7EHD (edge
histogram), MPEG7HTD (homogeneous texture),
MPEG7SCD (scalable color), MPEG7COMB (fixed
combination of descriptors).

For instance

GC = MPEG7CLD

specifies that a separate physical index is built to
consider the colour descriptor, when the label GC is
received.

In a query the labels can be used as well. For instance:

for $a in /Mpeg7/Description/MultimediaContent
where $a/Image ~ (‘<descr>’, EH)
return $a/Image/MediaUri

sends the label GC to the index in addition to the
content to be matched. In this case the physical index
that uses the colour descriptor is used to perform
similarity search. If no label is specified in the query
and labels are specified in the index.properties file,
then the first label is used, elsewhere no label are
passed. The index implementation has to decide what
to do in this case.
The AMTREE index implementation uses the first
entry in the “indexes.properties” file contained in
the “milos/milos/.milos/similarity/amtree”
directory. An example of entries in the
indexes.properties file is shown in Table 4.

It is possible to implement new indexes that use
particular strategies and that satisfy particular needs.
The association between the pair
<typeOfIndex>/<IndexName> and a specific index
implementation is set in the
"modulesFactory.properties" file in the
milos/milos/.milos folder. The syntax that can be
used is

<typeOfIndex>/<IndexName>= <Java Class>

where <Java Class> is the class that implement the
index.
An example of entries in the
modulesFactory.properties file is shown in Table 4.
You can implement new indexes for full text search
and for similarity search. Therefore valid values for
<typeOfIndex> are FULLTEXT and SIMILARITY.

It is possible to implement new indexes to be used in
MILOS 2.0. Section 8 discussed this.

6.4. Using XMLSE
A java application in order to access the XMLSE web
service has to import a number of packages. These are
listed in Table 5. An application should import the
exceptions that can be raised during network
operations, the stubs for the web services, the interface
of the XMLSE, the tools for crating stubs of XMLSE.
In order to create an instance of XMLSE we should
create a stub using the XMLSE stub tools, and we have
to set it to be connected to the correct endpoint and set
it to be session aware. These actions are shown in
Table 5.
Table 5 also shows an example of using XMLSE. In
the example an XML string is inserted in XMLSE.
Then, an xquery query is submitted and the results are
printed.
In the next two sessions we report all methods
supported by XMLSE.

6.5. Basic XMLSE methods

insert
void insert(java.lang.String xml,
 java.lang.String urn)
 throws java.rmi.RemoteException

Insert a XML document into the database
Parameters:
xml - XML document to insert
urn - Related XML document URN
Throws:
java.rmi.RemoteException

delete
void delete(java.lang.String urn)
 throws java.rmi.RemoteException

Delete a XML document
Parameters:
urn - XML document URN
Throws:
java.rmi.RemoteException

search
void search(java.lang.String query)
 throws java.rmi.RemoteException

Searching of XML documents. It allow to
search for documents in the XML database
using the XQuery syntax.
This method creates a result set that can be
browsed using a cursor that can be moved by
using the next() and absolute() methods.

Initially the cursor is positioned before the
first result.
Parameters:
query - xxquery query
Throws:
java.rmi.RemoteException

next
boolean next()
 throws java.rmi.RemoteException

Move the cursor at the next position of the
current result set
It can be used to access a result set with a fine
grained control, together with absolute(int
index), getUrn(), getContent(),
getScore(),
A more high level and more efficient manner
to access to the query resultset is to call
getResults(int startFrom, int

numElements) instead
Returns:
Return true if it has a result at the next
position
Throws:
java.rmi.RemoteException

absolute
boolean absolute(int index)
 throws
java.rmi.RemoteException

Set the value of the index position of the
query resultset.
It can be used to access a result set with a fine
grained control, together with next(),
getUrn(), getContent(), getScore(),
A more high level and more efficient manner
to access to the query resultset is to call
getResults(int startFrom, int

numElements) instead
Parameters:
index - Starting position
Returns:
Return true if it has a result at the index
position
Throws:
java.rmi.RemoteException

getResults
java.lang.String[][] getResults(int startFrom,

int numElements)
 throws
java.rmi.RemoteException

Get the query results
Parameters:
startFrom - Starting point of the resultset
numElements - Number of results to return
Returns:
Return a matrix of results. Each row in the
matrix contain: [document score, document
URN, and XML content] of a query result

If the resultset length is smaller than

numElements, then the matrix of the results
will has null values in the related result rows
Throws:
java.rmi.RemoteException

getUrn
java.lang.String getUrn()
 throws
java.rmi.RemoteException

Get the document URN of the current query
result.
Returns:
The document URN of the current query
result
Throws:
java.rmi.RemoteException

getContent
java.lang.String getContent()
 throws
java.rmi.RemoteException

Get the XML content of the current query
result.
Returns:
The XML content of the current query result
Throws:
java.rmi.RemoteException

getScore
float getScore()
 throws java.rmi.RemoteException

Get the document score of the current query
result.
Returns:
The document score of the current query
result
Throws:
java.rmi.RemoteException

6.6. Advanced XMLSE methods

beginBulkInsert
void beginBulkInsert()
 throws
java.rmi.RemoteException

Start a bulk insert session.
To insert the XML documents in a bulk insert
session call the bulkInsert(String xml,

String urn) method.
To end a bulk insert session call the
commitBulkInsert() method.
Throws:
java.rmi.RemoteException

commitBulkInsert
void commitBulkInsert()
 throws
java.rmi.RemoteException

Commit a bulk insert session.
To start a bulk insert session call the
beginBulkInsert() method.
To insert the XML documents in a bulk insert

session call the bulkInsert(String xml,

String urn) method.
Throws:
java.rmi.RemoteException

bulkInsert
void bulkInsert(java.lang.String xml,
 java.lang.String urn)
 throws
java.rmi.RemoteException

Insert the XML documents into the database
in a bulk insert session. This is typically much
faster than using the Insert() method:
connections to indexes are opened when
beginBulkInsert() is executed and closed
when commitBulkInsert() is executed.
Parameters:
xml - XML document
urn - Related XML document URN
Throws:
java.rmi.RemoteException

getDocument
java.lang.String
getString(java.lang.String urn)
 throws
java.rmi.RemoteException

Get a XML document from the database and
return it in a String object
Parameters:
urn - XML document URN
Returns:
Return XML document in a String object
Throws:
java.rmi.RemoteException

invalidateSession
void invalidateSession()
 throws
java.rmi.RemoteException

Invalidate a HTTP Session
Throws:
java.rmi.RemoteException

7. Multi Media Digital Library Service:
MMDLS

The Multi Media Digital Library Service (MMDLS) of
MILOS, also called Repository Metadata Integrator
(RMI) somewhere, manages the accesses to the MMS
and XMLSE. In addition it supports metadata mapping
to guarantee metadata independence. Therefore, in
addition to some functionalities related to the mapping
features, it also offers the functionalities of MMS and
XMLSE.
The mapping of application requests into requests
compatible to the metadata schema actually managed
by the MCMS is accomplished by defining a set of
schema mapping rules. The main purpose of this
mapping is to translate application requests into
XQuery queries compliant to the stored metadata. This
mechanism allows the MMDLS to translate names of
fields (such as Title, Author, etc.) known to the DL
application, into requests to the MSR without the need

Examples of entries in the milos.properties file:
hostMMS = http://213.26.247.189:8080/milos-MMS
hostXmlSE = auto

Examples of entries in the mapping.properties file:
dc.title = /lom, general/title/langstring
dc.description = /lom, general/description/langstring

Table 6: Examples of configuration of MMDLS in MILOS

of knowing the specific schema model adopted. When
a new XML schema is introduced, the system
administrator must specify the mappings for the new
metadata.

7.1. Configuration of MMDLS
MMDLS has to know the addresses of XMLSE and
MMS. This can be specified in the file
milos.properties in the milos/milos/.milos folder.
It accepts rules of the following form:

<endpoint>= <URL>

where <endpoint> can be hostMMS and hostXmlSE.
When MMDLS is managed by the same Tomcat
instance that manages MMS and XMLSE, the keyword
auto can be used in place of an URL. In This case
MMDLS tries to guess the actual address looking at the
Tomcat configuration files. Table 6 shows an example
of configuration of MMDLS.
MMDLS can be configured to support different
mappings between metadata known by the application
and those stored in the XMLSE by using the
mapping.properties file located in the .milos
directory.
The mapping.properties file contains a set of
mapping rules. Each mapping rule specifies how to
translate the name of a metadata field, known to the
application, into an XPath expression that specifies the
XML path names that should be used to access that
metadata field in the target metadata schema. A generic
mapping rule has the following structure:
<metadataType>.<FieldName> = <RE_XPath>,<
SE_XPath> where

1. The <metadataType> field identifies the
metadata model used by the application e.g.
DublinCore, SCORM [6], MPEG-7 [4] etc;

2. <FieldName> is the name of a metadata field
requested by the application e.g., Title,
Author, etc.;

3. <RE_XPath> (Retrieved Element XPath) is
the XPath corresponding to the XML element
that will be retrieved with this rule;

4. <SE_XPath> (Searched Element XPath) is the
XPath, under <RE_XPath>, of the element
that contains the value of the metadata field
used for searching. <SE_XPath> can also be
empty and in this case just the <RE_XPath> is
used.

As an example Table 6 shows some mapping rules that
can be used for DL for e-Learning applications, where
the Learning Objects in the repository have a complex
metadata structure, based on SCORM. The mapping
rules map Dublin Core requests into SCORM.

They specify that the Dublin Core metadata fields
dc.title and dc.description can be searched in
SCORM respectively by means of the XPath string
lom/general/title/langstring, and
lom/genaral/description/langstring. The whole
<lom> element will be retrieved when <langstring>
contains the desired value. Note that, the <title> and
<description> SCORM XML elements do not contain
the title text of the document, but the element
<langstring>, which in turn contains the real text.
Let us now explain how the mapping directives are
used by MMDLS to generate the XQuery query. The
MMDLS allows applications to search on metadata by
using the search method:

search(String MetadaType, String[] values, String[]

fields, String[] operators, String returnField),

This method searches for a set of metadata records of
the specified MetadaType. The fields parameter is an
array of (application known) names of metadata fields,
of the MetadaType, to search for. The values parameter
specifies the values that the fields must match (the
different fields are searched by using the boolean
connective AND). The operators parameter specify the
matching operator to be used. Finally, returnField
specifies the field of the retrieved records (i.e.
RE_X_Path) that the application wants to know. The
method translates the request into an XQuery query as
follows:

1. for each triple <MetadaType, valuei, fieldi, opi
>, specified in the search, MMDLS searches
the mapping rules matching
MetadataType.fieldi to fetch the corresponding
XPath strings RE_X_Pathi and SE_X_Pathi;

2. given the pair <MetadaType, ReturnField>,
specified in the search, MMDLS searches the
mapping rule matching
MetadataType.returnField to fetch the
corresponding XPath strings RE_X_Pathret
and SE_X_Pathret.

3. checks that all the strings RE_X_Pathi and
RE_X_Pathret are the same string and call that

string RE_X_Path, otherwise fail and stop;

Packages to be imported to use MMDLS:
import java.rmi.RemoteException; //RMI Exceptions
import javax.xml.rpc.Stub; //Stubs for web services
import it.cnr.isti.milos.businessLogic.MMDLS.MMDLS_IF; //Interface of the MMDLS web service
import it.cnr.isti.milos.businessLogic.MMDLS.MMDLS_Impl; //Tool for creating a stub for MMDLS
import javax.activation.FileDataSource; //Datasources for files
import javax.activation.DataHandler; //To wrap media objects when inserting

Actions to be executed to obtain an instance of MMDLS (a statefull session aware stub for MMDLS):
MMDLS_IF mmdls = (MMDLS_IF) new MMDLS_Impl().getMMDLS_IFPort();
((Stub)mmdls)._setProperty(Stub.ENDPOINT_ADDRESS_PROPERTY, "http://localhost:8080/milos-
MMDLS/MMDLS");
((Stub)mmdls)._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, new Boolean(true));
Example of use of an instance of MMDLS:
String object_guid="0a783ee65ab33d679aab0cb5e322e64d"; //a GUID to be used to create an URN
String object_urn="urn:milos:test:image_jpeg:"+guid; //an URN for the digital object
String metadata_guid="7b983ee65ab33d679aab0cb5e3a2e694"; //a GUID to be used for metadata
String metadata_urn="urn:milos:test:image_jpeg:"+guid; //an URN for metadata
//create a Data source for the image to be inserted:
FileDataSource fds=new FileDataSource("E:/MILOS-sdk/test-data-sets/images/"+guid+".jpg");
//create a data hander for the object to be inserted:
DataHandler dh=new DataHandler(fds);
String[] operators = {"="}; //operators to match fields against values
String return_field = "image_handler"; //field to be returned
String metadata = "test"; //metadata schema to be searched

//insert, search and retrieva using MMDLS
try{

mmdls.insertObject(dh,object_urn); //insert a digital object
mmdls.insertMetadata(metadata,metadata_urn,null); //insert metadata
mmdls.search(metadata, values,fields, operators, return_field); //search using mapping
String results[][] = mmdls.getResults(0,1); //get the first result
String url=mmdls.getObjectUrl(object_urn); //get the URL from the URN

}catch(RemoteException e){e.printStackTrace();}

Table 7: How to use MMDLS

4. finally, combines the XPath strings
RE_X_Path, RE_X_Pathi, and SE_X_Pathret
and opi to generate the XQuery query, as
follows:

for $a in RE XPath
where $a=SE XPath1 op1 value1 and : : : and $a opn
SE XPathn = valuen
return $a/SE XPathret

Example: Suppose that an application wants to use
Dublin Core to search SCORM metadata having a
specific title, and wants to have back the corresponding
descriptions. In this case we have MetadataType = dc,
field1 = title, returnField1 = description. Applying the
previous mapping rules we obtain:

for $a in /lom
where $a/general/title/langstring = value1
return $a/general/description/langstring

7.2. Using MMDLS
A java application in order to access the MMDLS web
service has to import a number of packages. These are
listed in Table 7. An application should import the
exceptions that can be raised during network
operations, the stubs for the web services, the interface
of the MMDLS, the tools for creating stubs of

MMDLS. Finally, we need tools for dealing with file
data sources and data handlers.
In order to create an instance (a stub actually) of
MMDLS we should create a stub using the MMLDS
stub tools, and we have to set it to be connected to the
correct endpoint (the web server where the web service
is deployed) and set it to be session aware. These
actions are shown in Table 7.
Table 7 also shows an example of using MMDLS. In
the example both a digital object and a metadata are
inserted in MMDLS. The example also shows how to
search for metadata using the mapping functionalities
and how to retrieve results and digital objects.
In the next two sessions we report all methods
supported by MMDLS distinguishing basic methods
and advanced methods.

7.3. Basic methods

insertMetadata
void insertMetadata(java.lang.String xml,
 java.lang.String urn,
 java.lang.String wrap)
 throws
java.rmi.RemoteException

Inserts a XML document into XMLSE
Parameters:
xml - XML document to insert
urn – URN to be assigned to the XML
document

wrap - metadata category (optional) (add wrap
as a root element of the document)
Throws:
java.rmi.RemoteException

deleteMetadata
void deleteMetadata(java.lang.String urn)
 throws
java.rmi.RemoteException

Deletes a XML document into the XMLSE
Parameters:
urn - XML document URN
Throws:
java.rmi.RemoteException

updateMetadata
void updateMetadata(java.lang.String xml,
 java.lang.String urn,
 java.lang.String wrap)
 throws
java.rmi.RemoteException

Updates a XML document into the XMLSE
Parameters:
xml - XML document to insert
urn - URN of the previous XML metadata
wrap - metadata category (optional)
Throws:
java.rmi.RemoteException

search
void search(java.lang.String metadataType,
 java.lang.String[] values,
 java.lang.String[] fields,
 java.lang.String[] operators,
 java.lang.String returnField)
 throws java.rmi.RemoteException

Searching for XML documents. This is a high
level searching method and it doesn’t requires
to express an XQuery query. The XQuery
query is built by internal routines using the
“mapping.properties” file. Be careful to add
the required entries into the
"mapping.properties" mapping file in the
".milos" directory before to run the search.
The operators parameter allow the following
operator types:
the standard xquery operators "=", ">",

"<", ">=", "<=", "!=" and the new
approximate operator "~" (for similarity and
fulltext search query)
Results are accessed using the getResults()
method
Parameters:
metadataType - metadata schema known by
the application
values –array of values to be matched
fields – array of application known fields to
be matched
operators – array of operators to be used for
matching
returnField - field whose content has to be
returned
Throws:
java.rmi.RemoteException

For example, suppose that the application executes:
search(“MT”,{“value_1”,…,”value_n”},
{“field_1”,…”field_n”}, {“=”,…,”=”},
“return_field”)
 Suppose there are the following mapping rules
in mapping.properties

 MT.field_1=/my_XML,/xml_field_1
 ...
 MT.field_n=/my_XML,/xml_field_n
 MT.return_field=/my_XML,/xml_field_retu
rn

 MMDLS generates and submit to XMLSE the
following Xquery

 for $a in /my_XML
 where
 $a/xml_field_1=value_1 and
 ...
 $a/xml_field_n=value_n
 return $a/xml_field_return

getResults
java.lang.String[][] getResults(int startFrom,

int numElements)
 throws
java.rmi.RemoteException

Gets the query results
Parameters:
startFrom - Starting position in the result set.
The first element in the result set is at position
0
numElements - Number of results to be
returned
Returns:
Return a matrix of results. Each row in the
matrix contain: [document score, document
URN, and XML content] of a query result

If the result set length is smaller than
numElements, then the matrix of the results
will have null values in the related result
rows
Throws:
java.rmi.RemoteException

insertObject
void insertObject(DataHandler dh,
 java.lang.String urn)
 throws
java.rmi.RemoteException

Inserts a media object into the multimedia
repository. The media object must be wrapped
in a DataHandler object
Parameters:
dh - Media object to insert
urn - Related media object URN
Throws:
java.rmi.RemoteException

getObjectUrl

java.lang.String
getObjectUrl(java.lang.String urn)
 throws
java.rmi.RemoteException

Gets the URL of a media object
Parameters:
urn - media object URN
Returns:
return the URL of the media object
Throws:
java.rmi.RemoteException

deleteObject
void deleteObject(java.lang.String urn)
 throws
java.rmi.RemoteException

Deletes a media object into the multimedia
repository
Parameters:
urn - media object URN
Throws:
java.rmi.RemoteException

updateObject
void updateObject(DataHandler dh,
 java.lang.String urn)
 throws
java.rmi.RemoteException

Updates a media object into the multimedia
repository.
Parameters:
dh - Media object to insert
urn - URN of the previous media object
Throws:
java.rmi.RemoteException

7.4. Advanced methods

beginBulkInsert
void beginBulkInsert()
 throws
java.rmi.RemoteException

Starts a bulk insert session.
To insert the XML documents in a bulk insert
session call the bulkInsert(String xml,

String urn, String wrap) method.
To end a bulk insert session call the
commitBulkInsert() method.
Throws:
java.rmi.RemoteException

commitBulkInsert
void commitBulkInsert()
 throws
java.rmi.RemoteException

Commits a bulk insert session.
To start a bulk insert session call the
beginBulkInsert() method.
To insert the XML documents in a bulk insert
session call the bulkInsert(String xml,

String urn, String wrap) method.
Throws:
java.rmi.RemoteException

bulkInsert

void bulkInsert(java.lang.String xml,
 java.lang.String urn,
 java.lang.String wrap)
 throws
java.rmi.RemoteException

Inserts the XML documents into the database
in a bulk insert session. This is typically much
faster than using the Insert() method:
connections to indexes are opened when
beginBulkInsert() is executed and closet
when commitBulkInsert() is executed.

Parameters:
xml - XML document to insert
urn - Related XML document URN
wrap - metadata category (optional) (add wrap
as a root element of the document)
Throws:
java.rmi.RemoteException

insertObject2
void insertObject2(DataHandler dh,
 java.lang.String urn,
 java.lang.String version)
 throws
java.rmi.RemoteException

Inserts a media object into the multimedia
repository. The media object must be wrapped
in a DataHandler object. A version identifier
is associated with the document. Several
version of the same object can be associated to
the same URN. Versions of objects are
physically stored in a subdirectory of the
directory assigned to the given URN. The
name of the subdirectory is version.
Parameters:
dh - Media object to insert
urn - Related media object URN
version - Media object version (e.g. big,
small, thumbnail, etc...)
Throws:
java.rmi.RemoteException

getObjectUrl2
java.lang.String
getObjectUrl2(java.lang.String urn,

java.lang.String version)
 throws
java.rmi.RemoteException

Gets the URL of a media object
Parameters:
urn - media object URN
object - version (e.g. big, small, thumbnail,
etc...) of the media object (if it exists)
Returns:
return the URL of the media object
Throws:
java.rmi.RemoteException

deleteObject2
void deleteObject2(java.lang.String urn,
 java.lang.String version)
 throws
java.rmi.RemoteException

Delete a media object into the multimedia
repository
Parameters:
urn - media object URN
object - version (e.g. big, small, thumbnail,
etc...) of the media object (if it exists)
Throws:
java.rmi.RemoteException

insertKeyframe
void insertKeyframe(DataHandler dh,
 java.lang.String videoUrn,

java.lang.String keyframeId)
 throws
java.rmi.RemoteException

Inserts a video's keyframe object into the
multimedia repository. The video's keyframe
object must be wrapped in a DataHandler
object. Keyframes are physically stored in a
subdirectory of the directory assigned to the
URN of the main video.
Parameters:
dh - Video's keyframe object to insert
videoUrn - Video's URN
keyframeId - ID of the video's keyframe
Throws:
java.rmi.RemoteException

getKeyframeUrl
java.lang.String
getKeyframeUrl(java.lang.String videoUrn,

java.lang.String keyframeId)
 throws
java.rmi.RemoteException

Gets the URL of a video's keyframe object
Parameters:
urn - video's URN
keyframeId - ID of the video's keyframe
Returns:
return the URL of the video's keyframe object
Throws:
java.rmi.RemoteException

getMetadata
java.lang.String
getMetadata(java.lang.String urn,

boolean removeWrap)
 throws
java.rmi.RemoteException

Gets a XML document from XMLSE
Parameters:
urn - XML document URN
removeWrap - If removeWrap is true, the root
element of the XML document is removed.
(To be used if the XML document has been
inserted with a wrap)
Returns:
Return the XML document in a String object
Throws:
java.rmi.RemoteException

query

void query(java.lang.String query)
 throws java.rmi.RemoteException

Implements the XML documents searching
functionality. It allows us to search for
documents in the XML database using the
XQuery syntax. Results are accessed by using
the getResults() method.
Parameters:
query - xxquery query
Throws:
java.rmi.RemoteException

updateObject2
void update2(DataHandler dh,
 java.lang.String urn,
 java.lang.String version)
 throws java.rmi.RemoteException

Update a specific version of a media object
into the multimedia repository.
Parameters:
dh - Media object to insert
urn - URN of the previous media object
version - Media object version (e.g. big,
small, thumbnail, etc...)
Throws:
java.rmi.RemoteException

deleteKeyframe
void getKeyframeUrl(java.lang.String videoUrn,

java.lang.String keyframeId)
 throws
java.rmi.RemoteException

Delete a video's keyframe object
Parameters:
urn - video's URN
keyframeId - ID of the video's keyframe
Throws:
java.rmi.RemoteException

invalidateSession
void invalidateSession()
 throws
java.rmi.RemoteException

Invalidate a HTTP Session
Throws:
java.rmi.RemoteException

8. Building new index plug-ins (MILOS
v2.0)

Version 2.0 of MILOS offers the possibility of
implementing and installing new full text and similarity
indexes.

To implement a new index you have to write a java
class that implements the Indexer_IF interface,
contained in the package
it.cnr.isti.xmlrep.xxquery.engine.modules. This
interface contains all methods that XMLSE needs to
interact with the index. It is possible to implement new
indexes that use particular strategies and that satisfy
particular needs. The association between the pair
<typeOfIndex>/<IndexName> and a specific index
implementation is set in the

import it.cnr.isti.xmlrep.xxquery.engine.modules.QueryDescriptor_IF;
import it.cnr.isti.xmlrep.xxquery.engine.modules.IndexerException;
import it.cnr.isti.xmlrep.xxquery.engine.modules.Indexer_IF;
import it.cnr.isti.xmlrep.xxquery.engine.modules.ResultList;
import it.cnr.isti.xmlrep.xxquery.engine.modules.Result;
import it.cnr.isti.xmlrep.xxquery.engine.modules.XMLDescriptor_IF;
import it.cnr.isti.xmlrep.xxquery.env.XmlRepEnvironment_IF;

Table 8: Packages to be imported to create new index plug-ins

"modulesFactory.properties" file in the .milos
folder. The syntax that can be used is

<typeOfIndex>/<IndexName>= <Java Class>

where <Java Class> is the class that implement the
index. An example of entries in the
modulesFactory.properties file is shown in Table 4.

You can implement new indexes for full text search
and for similarity search. Therefore valid values for
<typeOfIndex> are FULLTEXT and SIMILARITY.

To implement a new index to be used in MILOS you
have to

1. implement the “Indexer_IF” interface.
2. Give a name to your index in the

"modulesFactory.properties" file in the
milos/milos/.milos folder

3. Specify which elements have to be indexed
with the new index by configuring the
"index.properties" file in the
milos/milos/.milos folder

8.1. Using the Indexer_IF interface
In order to use (implement) the Indexer_IF interface
you have to import the packages shown in Table 8. To
do that, you have to add the xxquery.jar file to your
classpath. xxquery.jar can be found in the
milos/milos/web/XmlSEWeb/WEB-INF/lib folder.

8.2. Index life cycle
In order to correctly implement a new index it is very
important to understand the life-cycle of an index.

1. When an instance of XMLSE is asked to
execute an operation for the first time it

a. Creates and instance of all indexes
b. For every index it calls the method

setEnvironment(…) (See Below), to
tell all indexes about their running
environment

c. For every index it calls the method
open(…)(See Below) to perform
some index initialisation

2. When XMLSE decides that something has to
be inserted or searched in an index, it calls the
appropriate methods

3. When the XMLSE instance is closed (for
instance when the session expires) all indexes
are closed with the close() method to release
all resources.

Summarizing we have:
setEnvironment(…)

open(…)

insert(…)

search(…)

close(…)

8.3. Methods of Indexer_IF:

setEnvironment
void
setEnvironment(it.cnr.isti.xmlrep.xxquery.env.
XmlRepEnvironment_IF env)
 throws IndexerException

Sets the index environment through the
XmlRepEnvironment_IF parameter, like the
working directory of XMLSE or some others
information.
Parameters:
env - the data structure containing information
passed by the XMLSE.
XmlRepEnvironment_IF has a number of
methods for accessing XMLSE information.
Currently just the getStartDirectory() methods
gives useful information. It returns the
directory where all index working (sub-
)directory should be created.
Throws:
IndexerException

open
void open()
 throws IndexerException

Initializes the index. It can be used to perform
any index initialisation.
Throws:
IndexerException

close
void close()
 throws IndexerException

Closes the index. It can be used to release all
resources used by the instance.
Throws:
IndexerException

insert
void insert(XMLDescriptor_IF xmlDescriptor)
 throws IndexerException

Inserts an entry in the index. It has to be
implemented as an atomic operation. The
inserted entry should be available to all
sessions immediately.
XMLDescriptor represents the entry and
contains data to be indexed and data that are
needed by the XMLSE when an entry is
retrieved.
The content of the entry can be obtained by
using the methods getElementXML();The
content of an entry is basically an XML
element (for instance, the abstract element, or
the Image element).
The entry contains additional information
useful to the XMLSE:
- the id of the document which the element
belongs to. It can be obtained using
getDocumentId();
- the internal id of the name of the element. It
can beobtained using getEidName()
- the internal id of the element being indexed.
It can be obtained by using getEiid()
- the start and end position of the element in
the XML tree hierarchy. It can be obtained by
using getElementStart() and getElementEnd();
- the index labels associated with the index
definition in the index.properties file. This
information can be used by the index to decide
how to index the entry. It cen be obtained by
using getIndexNames();
Parameters:
xmlDescriptor - the descriptor of the XML
element.
Throws:
IndexerException

search
ResultList search(QueryDescriptor_IF query)
 throws IndexerException

Returns the list of results of the query
described by the QueryDescriptor_IF.
The QueryDescriptor_IF contains:
- the value key to be matched against entries
of the index. It can be obtained by
getIndexQuery();
- the index label used for this query. It should
be one among the ones defined in
index.properties. It can be obtained by
getIndexName();
- the internal identifier of the searched
element name. It can be obtained by
getEnid();
- the identifier of the element to be matched
against the key value. It can be obtained by
getEiid(). This is not used at the moment.
The result should be returned as a ResultList.
A result can be inserted in the ResultList using
the addResult(Result) method. A result cab be
built using the Result constructor:

Result(float score, long eiid,

int start, int end), where
-score is the score assigned to this entry,
-eiid, is the internal identifier of the returned
element
-start and end are the star and end position of
the element in the XML tree hierarchy.
Parameters:
query - the descriptor of the query.
Returns:
the list of results.
Throws:
IndexerException

getResultSize
int getResultSize()
 throws IndexerException

Returns the size of the most recent result.
Returns:
the dimension of the result.
Throws:
IndexerException

deleteDocument
void deleteDocument(long docId)
 throws IndexerException

Deletes the document with identifier DocId
Parameters:
docId - the identifier of the XML document
Throws:
IndexerException

deleteElement
void deleteElement(long elementInstanceId)
 throws IndexerException

Deletes the XML element with identifier
elementInstanceId. Currently this is not used
by the XML SE.
Parameters:
elementInstanceId - the identifier of the
XML element
Throws:
IndexerException

beginBulkInsert
void beginBulkInsert()
 throws IndexerException

Initializes the resource to do the bulk insert.
Throws:
IndexerException

commitBulkInsert
void commitBulkInsert()
 throws IndexerException

Database changes are committed. Bulk
insertions must be accessible to everybody
after this.
Throws:
IndexerException

bulkInsert
void
bulkInsert(XMLDescriptor_IF xmlDescriptor)
 throws IndexerException

Inserts the XML documents into the database
in a bulk insert session. This is typically much
faster than using the Insert() method. It is
not necessary that bulk insertions are visible
by everybody until commitBulkInsert() is
executed.
Parameters:
xmlDescriptor - a description of the XML
element to insert.
Throws:
IndexerException

produceStatistics
void produceStatistics()
 throws IndexerException

An utility to produce index statistics. This is
not currently used by XMLSE. An offline
procedure should be provided that uses it.
Throws:
IndexerException

9. References
[1] Dublin Core Metadata Initiative.

http://dublincore.org/.
[2] Echo: European CHronicles On-line. http://pc-

erato2.iei.pi.cnr.it/echo/.
[3] Helix Universal Server.

http://www.realnetworks.com/products/server/inde
x.html .

[4] Moving picture experts group.
http://www.chiariglione.org/mpeg/ .

[5] Real Time Streaming Protocol.
http://www.rtsp.org/ .

[6] Shareable content object reference model initiative
(scorm), the xml cover pages, October 2001.
http://xml.coverpages.org/scorm.html .

[7] G. Amato, F. Debole, F. Rabitti, and P. Zezula.
YAPI: Yet another path index for XML searching.
In ECDL 2003, 7th ECDL Conference, Trondheim,
Norway, August 17-22, 2003.

[8] G. Amato, F. Debole, A Native XML Database
Supporting Approximate Match Search, in ECDL
2004, 8th ECDL Conference, Vienna, Austria,
September 18-23, 2003

[9] C. B¨ohm, S. Berchtold, and D. Keim. Searching
in high-dimensional spaces: Index structures for
improving the performance of multimedia
databases. ACM Computing Surveys, 33(3):322–
373, September 2001.

[10] D. J. Gemmell, H. M. Vin, D. D. Kandlur, P. V.
Rangan, and L. A. Rowe. Multimedia storage
servers: A tutorial. IEEE Computer, 28(5):40–49,
May 1995.

[11] G. Salton and M. J. McGill. Introduction to
Modern Information Retrieval. McGraw-Hill Book
Company, 1983.

[12] P. Zezula, G. Amato, F. Debole, and F. Rabitti.
Tree signatures for xml querying and navigation.
In Database and XML Technologies, XSym 2003,
volume 2824 of LNCS, pages 149–163. Springer,
2003.

http://pc-erato2.iei.pi.cnr.it/echo/
http://pc-erato2.iei.pi.cnr.it/echo/
http://www.realnetworks.com/products/server/index.html
http://www.realnetworks.com/products/server/index.html
http://www.chiariglione.org/mpeg/
http://www.rtsp.org/
http://xml.coverpages.org/scorm.html

	1. Introduction
	2. Characteristics of a MCMS for digital library applications
	3. MILOS
	4. MILOS quick start:
	5. MultiMediaServer: MMS
	5.1. Configuration of MMS
	5.2. Using MMS
	5.3. Basic MMS methods
	insert
	getUrl
	delete
	update

	5.4. Advanced MMS methods
	insert2
	getUrl2
	delete2
	update2
	insertKeyframe
	getKeyframeUrl
	deleteKeyframe
	invalidateSession

	6. XML Search Engine: XMLSE
	6.1. Configuration of XMLSE
	6.2. Version 1.0
	6.3. Version 2.0
	6.4. Using XMLSE
	6.5. Basic XMLSE methods
	insert
	delete
	search
	next
	absolute
	getResults
	getUrn
	getContent
	getScore

	6.6. Advanced XMLSE methods
	beginBulkInsert
	commitBulkInsert
	bulkInsert
	getDocument
	invalidateSession

	7. Multi Media Digital Library Service: MMDLS
	Configuration of MMDLS
	7.2. Using MMDLS
	7.3. Basic methods
	insertMetadata
	deleteMetadata
	updateMetadata
	search
	getResults
	insertObject
	getObjectUrl
	deleteObject
	updateObject

	7.4. Advanced methods
	beginBulkInsert
	commitBulkInsert
	bulkInsert
	insertObject2
	getObjectUrl2
	deleteObject2
	insertKeyframe
	getKeyframeUrl
	getMetadata
	query
	updateObject2
	deleteKeyframe
	invalidateSession

	8. Building new index plug-ins (MILOS v2.0)
	8.1. Using the Indexer_IF interface
	8.2. Index life cycle
	8.3. Methods of Indexer_IF:
	setEnvironment
	open
	close
	insert
	search
	getResultSize
	deleteDocument
	deleteElement
	beginBulkInsert
	commitBulkInsert
	bulkInsert
	produceStatistics

	9. References

