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                           Abstract 

 

New methods and tools for application 

development in collaborative scientific 

enterprises (like Virtual Observatories (VO)) 

over multiple distributed sources of data and 

programs are required. In this paper we focus 

on results of research and experimental work 

oriented on problem-driven subject mediation 

emphasizing aspects of LAV/GLAV 

information sources integration in the 

mediator. The approach considered has the 

following distinguishing features: typed, object 

canonical model is used instead of usually 

applied relational one; a technique of refining 

mapping of source information models into 

extensible canonical one is provided; 

registration in a mediator of a relevant source 

is done so that a mediator type should be 

provably refined by a relevant source type or 

by a composition of such types  (the conflict 

resolving functions are to be specified, if 

required);  rewriting of non-recursive logical 

programs containing strongly typed rules is 

applied. These features provide methodological 

context for the current paper that is focused on 

description of the role the LAV/GLAV 

approach plays in the mediator. Using  

astronomical example taken from the Russian 

VO context, we show the technique of 

information source registration at the mediator 

and query rewriting technique in a typed 

specification environment applying 

LAV/GLAV approach. 

Keywords: subject mediator, LAV, GLAV, 

canonical typed model, refinement, query 

rewriting, source registration. 

1   Introduction 

In this paper
i
 subject mediation as an instrument for 

problem solving over multiple heterogeneous 

information sources (data and services) will be 

emphasized. To be specific, we consider subject 

mediation in e-science that will increasingly be carried 

out through distributed global collaborations enabled by 

the Internet. Typically, a feature of such collaborative 

scientific enterprises is that they will require access to 

very large sets of data sources, large scale computing 

resources and high performance visualization providing 

a feedback to the scientists. For instance, in astronomy 

such enterprises take a form of Virtual Observatories 

(VO). To get a consensus on the standards of the 

enterprise information infrastructures they create 

alliances (e.g., IVOA in astronomy [11]). Further we 

shall refer to VO as an example of a scientific enterprise 

having in mind that the approaches discussed are 

applicable to various branches of science. 

Various scientific problems are to be supported by VO, 

each of them considering in its own, specific context 

(probably, overlapping with contexts of other 

problems). Heterogeneous information sources of 

various kinds relevant to VO include data sources, 

service sources, process sources, ontological sources. 

Many of such sources are autonomous and evolve with 

time. A set of sources relevant to a specific problem is 

quite rapidly changing. The technologies applied for 

creating relevant sources while observing the Universe 

and to support them are also rapidly evolving. 

Justifiable identification of sources relevant to a 

problem, reaching semantic integration of various kinds 

of them in context of the problem, making problem 

solving information system stable in the rapidly 

evolving world of relevant sources constitute serious 

challenges. New methods and tools for VO application 

development over multiple distributed collections of 

data and programs are required. 

We emphasize two principally different approaches 

to the integrated representation of multiple information 

sources for a scientific problem: 1) moving from 

sources to problems (an integrated schema of multiple 

sources is created independently of a definition of 

specific application) and 2) moving from a problem to 

the sources (a description of an application subject 

domain (in terms of concepts, data structures, functions, 

processes) is created, into which sources relevant to the 

application are mapped). The first approach driven by 

information sources is not scalable with respect to the 

number of sources, does not make semantic integration 

of sources in a context of specific application possible, 

does not lead to justifiable identification of sources 
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relevant to specific problem, does not provide the 

required information system stability w.r.t. evolution of 

the observation sources (e.g., appearance of a new 

information source relevant to the problem lead to 

reconsideration of the integrated schema). 

The second approach (problem- or application-driven) 

assumes creation of subject mediator that supports an 

interaction between an application and sources on the 

basis of the application subject domain definition 

(description of the mediator). For problem solving the 

subject mediator approach removes the disadvantages 

mentioned for the approach driven by information 

sources.  

Two approaches for the heterogeneous data sources 

integration are known as Global-as-View (GAV) and 

Local-as-View (LAV). According to GAV [10,21] a 

global schema is defined in terms of the pre-selected 

sources. LAV [10,21] is opposite: sources are defined 

as views over the mediator schema. It is easy to see that 

technically GAV corresponds to the information 

sources driven approach, and LAV – to the problem 

driven approach. Later a variation of LAV appeared 

(called GLAV) [7] allowing the head of the LAV view 

definition rules to contain any source schemas query 

and hence is able to express the case where a source 

schemas are used to define the global schema constructs 

(GAV). 

In this paper we focus on some results of research and 

experimental work oriented on problem-driven subject 

mediation emphasizing aspects of LAV/GLAV 

information sources integration in the mediator. The 

problem-driven approach we are focused on has the 

following distinguishing features comparing to the 

usually considered in the information integration 

context, including: 

 the problem solving over multiple heterogeneous 

distributed sources (data and services) is emphasized 

(not just integration of sources) [4,5,19,20]; 

 this feature imposes specific requirements on the 

canonical mediator model exploited (typed, object 

data model is used [13] instead of usually considered 

relational one); 

 the notion of extensible canonical information model 

is introduced [16,15] as a unifying model into which 

various data and service models (further source 

models) are mapped; 

 a technique of refining mapping of source models 

into extensible canonical one is provided (kernel of 

the canonical model is fixed as a hybrid object-

oriented/frame-based model; for each source model 

an extension of canonical model is provided so that 

the kernel together with extension should be refined 

by a source data model, the refining condition is 

formally justified [18,25,26]); 

 a mediator is defined in a canonical model, 

independently of the information sources. Mediator 

defines a domain of the problems to be solved. The 

definition contains non-functional requirements 

(expressed through the mediator metadata – e.g., data 

quality requirement), ontological specifications, 

specification of types, classes, functions, constraints, 

processes for the entities involved; 

 for registration in a mediator the relevant source 

identification is provided through the selection from 

various registries of the candidates satisfying non-

functional requirements (applying metadata), as well 

as ontologically, structurally and behaviorally 

matching to respective specifications of a mediator 

[6];  

 a type calculus is applied [14] to provide source 

schema mapping (expressed in canonical model) into 

the mediator schema during the registration of 

relevant to the mediator sources in the mediator. 

The features listed above have been described in the 

cited publications elsewhere. These features provide 

methodological context for the current paper that is self-

contained and focused on description of the role the 

LAV/GLAV approach plays in the mediator. Using 

astronomical example (distant galaxies identification 

problem) taken from the Russian VO context [4], we 

focus on the techniques of information source 

registration at the mediator and query rewriting. Both 

techniques work in a typed mediation environment 

applying LAV/GLAV. 

2   Mediator example definition  

In the rest of the paper we will use the example of a 

subject mediator for distant galaxies discovery problem 

[4] to demonstrate our techniques. Study of properties 

of distant galaxies (being on the early stage of 

evolution) allows to justify cosmological theories. An 

approach used here is based on distant galaxies 

detection from radio source samples by matching with 

optical objects. The candidate object selection 

procedure may include a few steps to select objects: by 

radio properties, - angular size (for considerable 

redshifts usual object angular sizes are in range 1 arcsec 

to 1 arcmin), morphology (powerful radio galaxies are 

considered), flux limit (objects considered have fluxes 

about 100 mJy (on average)), spectral index (steep 

spectrum sources are preferred), and optical properties - 

color dropouts and magnitude limits, galaxy position on 

K-z Hubble diagram and selection by X-ray emission 

[4]. Definitions of the subject mediator types and 

classes containing respective information are given in 

2.2. 

2.1   Canonical information model 

For the canonical model of a mediator a hybrid frame-

based, object-oriented model (Synthesis language [13]) 

is used. The canonical model provides support of wide 

range of data - from untyped data on one end of the 

range to strictly typed data on another. Typed data 

should conform to the abstract data type (ADT) 

specifications prescribing behavior of their instances by 

means of the type operations. ADT describes interface 

of a type whose signature defines names and types of its 

operations. Classes are collections of instances of 

respective types. Subtyping relationship is supported by 

the model.  



  

Formulae in the language are used to specify queries, 

rules and constraints. To specify formulae a variant of a 

typed (multisorted) first order predicate logic language 

is used. Predicates in formulae correspond to collections 

(such as sets and bags of non-object instances), classes 

treated as set subtypes with object-valued instances, 

functions. ADTs of instance types of collections and 

classes should be defined. Rules look as: 

Q(v/Tv):- C1(v1/Tv1), … , Cn(vn/Tvn),  

F1(t1,y1), … , Fm(tm,ym), B 

where in the body (having SPJ semantics) Ci is a class 

predicate, Fi is a functional predicate and B is a 

constraint, that is a conjunction of predicates over the 

variables v, v1, … , vn, typed by Tv, Tv1, … , Tvn , or 

output variables y1 y2  …  ym of functional atoms. 

Each atom Ci(vi/Tvi) or Fj(tj,Yj) (i = 1, … , n; j = 1, 

…,m) is called a subgoal. ti is a sequence of terms 

(might be empty) corresponding to input parameters of 

a function.  Rules can be combined in program blocks.  

2.2   Mediator schema specification 

-ra : real

-de : real

-raError : real

-deError : real

«type»

CoordEQJ
-spatialCoord

1 1

-spIndex : real

RadioCatalogData

+colorIndexURG()

+deltaColorIndexURG()

OpticalCatalogData

+matchCatalog()

-name : string

CatalogData

-magValue : real

-magError : real

-filter : string

«type»

Magnitude

-magnitude*

1

 

Fig.1 Specification of the mediator schema types 

Fig.1 shows a fragment of the mediator schema module 

for distant galaxy discovery. It includes observed 

scientific data holdings in radio or optical catalogs 

(classes RadioCatalogData and OpticalCatalogData). 

The superclass CatalogData contains objects from both 

catalogs. It has the attribute spatialCoord (which 

defines coordinates of an astronomical object), the 

attribute name (which defines the name of the object in 

the catalog) and the method matchCatalog(), which 

returns true if two points in space are close to each 

other.  

The functions have the following signatures: 

matchCatalog: {in: function; params: { 

+ra1/real, +de1/real, ra2/real, +de2/real, 

+rad1/real, +rad2/real, -returns/boolean};  

}; 

colorIndexURG: {in: function;  

  params: {-returns/real}; 

}; 

deltaColorIndexURG: {in: function;  

  params: {-returns/real}; 

}; 

Autonomous mediator functions are defined in the 

module I_Mediator with the following functions: 

{xmatch; in: function; params:{ +ra1/real, 

+de1/real, ra2/real, de2/real, +rad1/real, 

+rad2/real, -returns/boolean};}, 

{colorIndexURG; in: function; params: { 

+magnitude/{set; type_of_element: 

Magnitude;}, -returns/real};}, 

{deltaColorIndexURG; in: function;      

params: { +magnitude/{set; type_of_element: 

Magnitude;}, -returns/real};} 

} 

3   Information source registration 

approach 

Each mediator supports the process of systematic 

discovery and registration of sources uniformly 

expressing their definitions in terms of the mediator. 

Such registrations can be done concurrently, at any time 

and are semi-automatic. 

Discovery of relevant data types (classes) in sources is 

based on three models: metadata model describing the 

information sources (according to the IVOA standard 

[4,11]), ontological model defining concepts of a 

subject domain [15] and canonical model providing for 

definition of structure and behavior of objects of the 

subject domain and of the sources.  

Source registration in a mediator applying canonical 

model is a process of specification transformation that 

includes decomposition of the mediator specifications 

into consistent fragments, search among relevant 

sources of the appropriate type fragments considered as 

candidates for refinement by them of the mediator 

types, constructing expressions defining source classes 

as compositions of the mediator classes. It is said that 

specification A refines specification D, if it is possible 

to use A instead of D so that the user of D does not 

notice this substitution [14]. The fact of specification 

refinement can be proved in the first order logic due to 

defining a mapping of the mediator canonical model 

into formal specification [25]. To manipulate 

specifications during source registration process a 

specification calculus has been defined [14]. In the 

calculus a type specification can be decomposed into set 

of type reducts that can be used as fragments for 

refinement construction and composition. An operation 

of constructing common (and most common) reduct for 

a pair of type specifications T1 and T2 has been defined 

(a common  reduct  for  types T1, T2 is such reduct R(T1) 

that there exists a reduct R(T2) such that R(T2) is a  

refinement of R(T1)). In the type algebra the operations 

for type specification compositions (meet and join) have 

also been defined [14]. During registration, concretizing 

types reconciling the conflicts (of values, structures, 

behaviors) are defined so that an instance type of the 

mediator class (or its reduct) would be refined by an 

instance type of the relevant source class (or its reduct). 

The main registration result is a GLAV expression 

defining how a source class is determined as a 

composition of the mediator classes. The registration 

approach is intended to cope with a dynamic, possibly 

incomplete set of sources. Sources may change their 

exported schemas, become unavailable from time to 



time. In process of sources evolution a specification of 

mediator remains stable, only such GLAV expressions 

need to be modified. 
Process of information source registration contains the 

following activities: 

1. select the source candidates satisfying the non-

functional mediator requirements (applying metadata 

and conventional metadata registries); 

2. from the candidates obtained at the first step select 

the sources ontologically relevant to respective 

specifications of a mediator; 

3.  for a pair of ontologically relevant types in source 

and in mediator construct their most common reduct. 

In case of a conflict between type specifications the 

conflict resolving functions are to be specified;  

4. for each source class construct a GLAV view for this 

source class and all its ontologically relevant 

mediator classes. 

These activities are semi-automated and supported by 

the registration tool. 
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-RAh : integer

-RAm : integer

-RAs : real

-e_RAs : real

-DE : string

-DEh : integer

-DEm : integer
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-e_S76 : real
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-ra : real

-dec : real

-u : real

-err_u : real

-g : real
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-r : real

-err_r : real

-z : real

-err_z : real

PhotoPrimary
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Fig.2 Specification of SDSS (a) and RC Catalog (b) 

schemas fragments 

3.1   Searching for the candidate sources 

The process of searching for the candidate sources to be 

registered at the mediator starts with the metadata 

search. In this paper we omit the details of this process 

and assume that two relevant sources have been 

identified: RC catalog – catalog of radio objects [4] and 

SDSS (www.sdss.org) – survey of one-quarter of the 

entire sky, in 5 spectral ranges from ultraviolet to 

infrared. 

Fig.2a shows the fragment of the specification of SDSS 

optical catalog, the table PhotoPrimary after mapping it 

into the canonical model as a class definition. Fig.2b 

shows the fragment of the specification of RC radio 

catalog. Basic attributes for these catalogs are the 

following: objID and name specify the name (identifier) 

of an object in the catalog, ra, de, RAh, RAm, RAs, DE, 

DEh, DEm, DEs specify the coordinates of an object in 

space. 

3.2   Identification of relevant schema elements 

The process of identifying of relevant elements (classes, 

types, attributes, functions) in mediator and candidate 

source schemas is based on an ontology integration 

process [6]. Here we omit the details of this process. 

The result of this phase is a set of ontologically relevant 

elements. A sample of relevant elements in the mediator 

and SDSS catalog specifications follows: 

opticalCatalogData ~ photoPrimary 

OpticalCatalogData ~ PhotoPrimary 

CatalogData.name ~ PhotoPrimary.objID 

CoordEQJ.ra ~ ra 

CoordEQJ.de ~ dec 

Magnitude.magValue ~ u 

Magnitude.magError ~ err_u 

3.3   Most common reduct construction 

In our example the source type PhotoPrimary is 

relevant to 3 mediator types - OpticalCatalogData, 

CoordEQJ and Magnitude. For each of these pairs we 

construct a most common reduct and respective 

concretizing reduct. The specification of such reducts 

for the pair PhotoPrimary and OpticalCatalogData 

types follows: 

{R_OData_SDSS; in: reduct; 

    metaslot of: OpticalCatalogData; 

      taking: {name, coord, magnitude};  

      c_reduct: CR_OData_SDSS; 

    end; 

}; 

{CR_OData_SDSS; in: c_reduct;  

    metaslot of: PhotoPrimary; 

      taking: {objID}; 

      reduct: R_OData_SDSS; 

    end; 

simulating: { 

R_OData_SDSS.name ~ CR_OData_SDSS.objID, 

R_OData_SDSS.coord ~ R_OData_SDSS.get_coord, 

R_OData_SDSS.magnitude ~ 

R_OData_SDSS.get_magnitude 

; 

get_coord: {in: function; params:{ -returns/ 

{set; type_of_elements: CoordEQJ;}}; 

    {{ returns’ = this/CR_Coord_SDSS }} 

}; 

get_magnitude: {in: function; params:{ -

returns/ {set; type_of_elements: 

Magnitude;}}; 

    {{ returns’ = this/CR_Magnitude_SDSS }} 

  }; 

}; 

The most common reduct R_OData_SDSS defines the 

fragment of mediator type OpticalCatalogData which 

can be refined by the fragment of source type defined 

by concretizing reduct CR_OData_SDSS. Slot taking 

includes a list of attributes taken from the type being 

reduced. 

The line R_OData_SDSS.name ~ 

CR_OData_SDSS.objID in the slot simulating indicates 

that the attribute name of the mediator type 

OpticalCatalogData corresponds to the attribute objID 

of the source type PhotoPrimary.  

The line R_OData_SDSS.coord ~ 

CR_OData_SDSS.get_coord in the slot simulating 

indicates that the attribute coord of the mediator type 

OpticalCatalogData is calculated from attributes of the 

source type PhotoPrimary by the conflict resolving 

function get_coord.  

Conflict resolving functions (such as get_coord and 

get_magnitude) may resolve various kinds of conflicts 

between the specifications of mediator and source 



  

types. 

Similarly we construct most common reducts 

R_Coord_SDSS and CR_Coord_SDSS (for 

PhotoPrimary and CoordEQJ types), and 

R_Magnitude_SDSS and CR_Magnitude_SDSS (for 

PhotoPrimary and Magnitude types). 

3.4   GLAV views construction 

The process of heterogeneous data sources registration 

in the subject mediator is based on LAV/GLAV 

approach. This approach allows the head of the LAV 

view definition to contain any source schemas query 

and hence is able to express the case where a source 

schemas are used to define the global schema constructs 

(GAV). The GAV approach allows to specify functions 

resolving various kinds of conflicts between mediator 

and source specifications. It also allows to define rules 

for transformation of query results from source to 

mediator. 

Thus the registration process consists of constructing a 

set of GLAV views, having the following form: 

V(v/Tv):-Cm1(v1/Tv1),…,Cmn(vn/Tvn), 

Fm1(X1,Y1),…,Fmm(Xm,Ym),Bm 
(LAV rule) 

V(v/Tv) :- Cs1(v1/Tv1),…,Csn(vn/Tvn), 

Fs1(X1,Y1),…,Fsm(Xm,Ym), Bs 
(GAV rule) 

where Cmi is a mediator class predicate, Fmi is a 

mediator functional predicate, Csi is a source class 

predicate, Fsi is a source functional predicate or conflict 

resolving function, Bm and Bs are conditions. 

We start with constructing partial views for each pair of 

ontologically relevant mediator and source classes. 

Then for each source class we compose all its partial 

views into complete view. 

In our example the source class photoPrimary 

corresponds to the mediator class opticalCatalogData. 

As it was shown in 3.3, its instance type PhotoPrimary 

has 3 relevant mediator types (and 3 common reducts 

R_OData_SDSS, R_Coord_SDSS and 

R_Magnitude_SDSS corresponding to these types). 

Therefore we first construct new composed types 

CT_OData and CT_SDSS as a join of the common 

reducts and their respective concretizing reducts. 

Operation join T1 | T2 of the type specification calculus 

[14] yields the “join” of specifications of the operand 

types T1 and T2 . 

CT_OData[name, coord, coord_ra, coord_de, 

magnitude, magnitude_magValue, 

magnitude_magError, magnitude_filter] = 

R_OData_SDSS[name, coord, magnitude] |  

R_Magnitude_SDSS[magnitude_magValue: 

magValue, magnitude_magError:magError,  

magnitude_filter:filter] | 

R_Coord_SDSS[coord_ra:ra, coord_de:de] 

CT_SDSS[objID, get_coord, get_magnitude, u, 

err_u, g, err_g, i, err_i, r, err_r, z, 

err_z, get_magValue, get_magError, 

get_filter, ra, dec] = CR_OData_SDSS[objID, 

get_coord, get_magnitude] | 

CR_Magnitude_SDSS[u, err_u, g, err_g, i, 

err_i, r, err_r, z, err_z, get_magValue, 

get_magError, get_filter] |  

  CR_Coord_SDSS[ra, dec] 

Then using this definition, we construct a GLAV view 

v_SDSS_RData for source class photoPrimary and 

mediator class opticalCatalogData. 

First we specify a LAV rule: 

v_SDSS_OData(x/CT_OData[name, coord, 

coord_ra, coord_de, magnitude, 

magnitude_magValue, magnitude_magError, 

magnitude_filter])  

:- 

opticalCatalogData(x/OpticalCatalogData

[name, coord, magnitude, 

coord_ra:coord.ra, coord_de:coord.de,   

magnitude_magValue: magnitude.magValue, 

magnitude_magError: magnitude.magError, 

magnitude_filter: magnitude.filter])  

(LAV1) 

Instance type of the class predicate v_SDSS_OData is 

CT_OData. Attributes from the OpticalCatalogData, 

Coord and Magnitude types are inserted into the class 

predicate. 

Then we specify a GAV rule: 

v_SDSS_OData(x/CT_OData[name, coord, 

coord_ra, coord_raError, coord_de, 

coord_deError, magnitude, 

magnitude_magValue, 

magnitude_magError, magnitude_filter])  

:- photoPrimary(x/CT_SDSS[name:objID, 

coord_ra: ra, coord_de: dec]) 

& get_coord(x, coord) 

& get_magnitude(x, magnitude) 

& get_magValue(x, magnitude_magValue) 

& get_magError(x, magnitude_magError) 

& get_filter (x, magnitude_filter) 

(GAV1) 

Reduct in the class predicate v_SDSS_OData contains 

all attributes from the composed type CT_OData. 

Reduct in the class predicate photoPrimary includes 

only attributes from the composed type CT_SDSS. Also 

we rename source attributes as view attribute names if 

needed. Such renaming is taken from slot simulating at 

a concretizing reduct specification. E.g., the reduct 

element name: objID defines that the objID attribute is 

renamed to name, according to the correspondence 

R_OData_SDSS.name ~ CR_OData_SDSS.objID 

obtained at the concretizing reduct CR_OData_SDSS 

specified above. Then for each function from the 

composed type CT_SDSS a respective function 

predicate is appended to the GAV view body. E.g., the 

function get_coord in the appended predicate is taken 

from the CR_OData_SDSS concretizing reduct and the 

result attribute name is determined as coord, the name 

of the attribute taken from the correspondence 

R_OData_SDSS.coord ~ CR_OData_SDSS.get_coord 

obtained from the concretizing reduct CR_OData_SDSS 

specified above. 

In our example a source class photoPrimary 

corresponds to only one mediator class 

opticalCatalogData, so we do not need to construct a 

new view as a composition of partial views. 

In the same way we construct GLAV view for RC 

catalog: 

  CT_RData = R_RData_RC | R_Coord_RC 

  CT_RC = CR_RData_RC | CR_Coord_RC 



v_RC_RData(x/CT_RData[name, spIndex, 

coord, coord_ra, coord_raError, 

coord_de,coord_deError])  

:- radioCatalogData( 

x/RadioCatalogData[name, 

spIndex,coord, ra: coord.ra, raError:  

coord.raError, de: coord.de, deError:  

coord.deError]) 

(LAV2) 

v_RC_RData(x/CT_RData[name, spIndex, 

coord, coord_ra, coord_raError, 

coord_de, coord_deError])  

:- rcCatalog(x/CT_RC[name, spIndex: 

Sp-Index, coord_ra, coord_raError, 

coord_de, coord_deError])  

& get_coord(x, coord) 

(GAV2) 

4   Query program rewriting 

To support GLAV approach we have developed a query 

rewriting algorithm composed of three phases:  formal 

rewriting and semantic analysis implementing LAV 

approach followed by the third phase - GAV-views 

unfolding. For non-recursive query programs consisting 

of several rules the rewriting is applied to each rule 

separately. Implementation of the LAV approach is 

based on a variant of the inverse-rule algorithm [27] 

extended for typed query language [17]. To the results 

of the formal rewriting phase, we apply semantic 

analysis that checks a satisfiability of the rule and 

eliminates Skolem functions. 

4.1   Formal rewriting 

The formal query rewriting is based on a notion of the 

inverse rule (further, IR). We consider two kinds of IRs: 

class-to-class IRs and function-to-funtion IRs. Class-to-

class IRs are obtained from a LAV view definition as 

pairs of the head of the view and a class predicate from 

the body of the view. The class-to-class IR has the form 

C(x/T)  V(_/R) where the predicate C(x/T) is called a 

head of the IR and V(_/R) is a body of the IR 

(underscore denotes anonymous variable). For a view 

V(_/R) :- C1(x1/T1) & … & Cn(xn/Tn) & F1(t1, y1) & …& 

Fm(tm, ym) & B we construct class-to-class IRs C1(x1/T1) 

)  V(_/R), … , Cn(xn/Tn) )  V(_/R). IRs define how a 

particular body predicate expressed in terms of the 

mediator schema can be rewritten into a predicate 

expressed in terms of GAV views and the source 

schema. E. g., occurrences of C(x/T) in a rule can be 

replaced with V(_/R) to obtain a contained rewriting if 

there is an IR C(x/T) )   V(_/R) and reducts T and R 

designate ADTs related so that R refines T. Generally, R 

does not include all attributes defined in the body of the 

view and it should be extended by the skolemization. 

Since in our data model attributes are defined as 

respective get-functions, we consider the get-functions 

of extended attributes as Skolem functions (and mark 

them with # symbol). E. g., in the view v(_/R[a, b]):-

p(x/Tp[a, b]) & q(y/Tq[b, c]) & f(x, z), the head reduct 

does not include attributes x, y, c and z, hence it is 

extended to the reduct R[a, b, x:#x, y:#y, c:#c, z:#z]. 

Then two IRs are constructed: p(x/Tp[a, b])  v(_/R[a, 

b, x:#x]) and q(y/Tq[b, c])  v(_/R[b, y:#y, c:#c]).  

In our example, from the view LAV1 we construct the 

following class-to-class IR: 

radioCatalogData(x/RadioCatalogData[ 

name, spIndex, coord, ra: coord.ra,  

raError: coord.raError, de: coord.de,  

deError: coord.deError, flux])<-  

v_RC_RData(_/CT_RData[x:#x, name,  

spIndex, coord, coord_ra, 

coord_raError, coord_de, 

coord_deError, flux]) 

(IR1) 

and from the view LAV2 we construct the following 

class-to-class IR: 

opticalCatalogData(x/OpticalCatalogData

[name, coord, coord_ra: coord.ra, 

coord_de: coord.de, magnitude]) <- 

v_SDSS_OData(_/CT_OData[x:#x, name, 

coord, coord_ra, coord_de, magnitude]) 

(IR2) 

Function-to-function IRs are defined directly during the 

source registration. The function-to-function IR is a 

formula, which has the form all x1/T1, … , xn/Tn F(t, y) 

 G(s, y) where x1, … , xn are variables typed by types 

T1, … , Tn, t and s are terms over these variables, and y 

is the resulting attribute. Function-to-function IRs are 

used to rewrite function predicates similarly to class-to-

class IRs used to rewrite class predicates. 

In our example, there are three function-to-function IRs 

defined during the registration process:  

all x/OpticalCatalogData  

colorIndexURG(x, ci)  

<-ocdColorIndexURG(x.magnitude,ci) 

(IR3) 

all x/OticalCatalogData  

deltaColorIndexURG(x, dci)  

<-ocdDeltaColorIndexURG(x.magnitude,dci) 
(IR4) 

all ra1/real, de1/real, ra2/real, 

de2/realb, rad1/real, rad2/real  

matchCatalog(ra1,de1,ra2,de2,rad1,rad2,b)  

<- xmatch(ra1,de1,ra2,de2,rad1,rad2,b) 

(IR5) 

The formal rewriting is applied to the body of a rule. 

For each body predicate which is not a built-in 

predicate we choose an IR such, that its head can be 

unified with this body predicate. The unification of the 

head of the IR with the body predicate implies the 

following transformation of the body of the IR. 

A class-to-class IR C(x/T[x1/T1:t1, … , xn/Tn:tn])  

V(_/R[x/T:y, x1/T1:y1, … , xn/Tn:yn]), where t1, …, tn are 

attribute paths, can be unified with a body predicate 

C’(z/T
’
[z1/S1:t1.s1, … , zk/Sk:tk.sk]), where k≤n, C is a 

subclass of the class C’, Si is a subtype of Ti, and s1, … , 

s2 are attribute paths. The transformed body of the IR is 

constructed as the following class predicate: 

V(_/R[z/T:y, z1/S1:y1.s1, … , zk/Sk:yk.sk]). 

A function-to-function IR all x1/T1, … , xn/Tn F(t, y)  

G(s, y) can be unified with a body predicate F(t’, z) if a 

unification of terms t and t’ can be established as a 

conjunction of equalities predicates x1=t’1 & … & 

xn=t’n & E1 & … & Ek, where each variable xi is unified 

with a term t’i and Ej are equalities that equate subterms 

tj (subterm of t) and t’j (subterm of t’) providing their 

unification. The transformed body of the IR is 

constructed as a conjunction of a function predicate 



  

G(s’, z) & E1 & … & Ek where s’ is constructed from s 

replacing all occurrences of x1, …, xn with terms t1, … , 

tn. E. g., the function-to-function IR all x/real f(45, x, y) 

 g(x,y) can be unified with f(a, b, c) and the 

transformed body of the IR is constructed as g(b, c) & a 

= 45. 

For a given rule Q(_/R) :- C1(x1/T1) & … & Cn(xn/Tn) & 

F1(t1, y1) & …& Fm(tm, ym) & B and a collection of IRs, 

where unification of a class-to-class IR with a body 

predicate Ci(xi/Ti) implies transformation of the body of 

the IR: Vi(_/Ri), and unification a function-to-function 

IR with the body predicate Fj(tj, yj) implies 

transformation of the body of the IR: Gj(sj, yj) & Ej, the 

following rewriting is constructed: Q(_/R) :- V1(_/R1) & 

… & Vn(_/Rn) & G1(s1, y1) & …& Gm(sm, ym) & E1 & … 

& Em & B. The constructed rewriting is a contained 

rewriting of the initial rule (the limit of the paper size 

does not permit to include the proof of this statement). 

Consider the following rule for our example: 

r(_/R[ra, de, name, name1, ra1, de1])  

:-radioCatalogData(y/RadioCatalogData[name, 

ra: coord.ra, de: coord.de]) & 

opticalCatalogData(x/OpticalCatalogData[name

1, ra1: coord.ra, de1: coord.de])  

& colorIndexURG(x, ci)  

& deltaColorIndexURG(x, dci) 

& matchCatalog(ra, de, ra1, de1, 45, 45) 

& ra >= 120.0 & ra <= 255.0 & de >= 4.39 & 

de <= 5.61 & ci > dci 

This rule is a part of the problem solving. We get 

astronomical objects contained both in radio catalog 

and optical catalog applying cross-match function, 

having coordinates in a given range, and satisfying the 

specified condition with the methods colorIndexURG 

and deltaColorIndexURG. 

Table 1 describes the formal rewriting applied to the 

body of this rule (body predicates of the rule are listed 

in the first column, the collection of chosen IRs, which 

are unified with the body predicates, are listed in the 

second column and implied transformations of the 

bodies of the IRs are listed in the third column). 

After the unifications and transformations have been 

performed, the following rewriting of the rule is 

constructed from the transformed bodies of the chosen 

IRs: 

r (_/R[ra, de, name, name1, ra1, de1])  

:- v_RC_RData(_/CT_RData[y:#x, name, ra: 

coord_ra, de: coord_de]) 

& v_SDSS_OData(_/CT_OData[x:#x, name1: name, 

ra1: coord_ra, de1: coord_de])  

& ocdColorIndexURG(x.magnitude, ci) 

& ocdDeltaColorIndexURG(x.magnitude, dci) 

& xmatch(ra, de, ra1, de1, 45, 45) 

& ra >= 120.0 & ra <= 255.0 & de >= 4.39  

& de <= 5.61 & ci > dci 

4.2   Semantic Analysis 

Since some obtained rewritings may contain Skolem 

functions and unsatisfiable constraints we should apply 

additional analysis to derive rules without Skolem 

functions and filter out unsatisfiable rules.  

During this phase we track atomic values of all terms 

found in the rule and bind them to variables. For a term 

t, which has a non-scalar type, an ADT with attributes 

a1, … , an,  we bind to variable terms t.a1, … , t.an 

recursively. Projections and joins are translated to a set 

of equalities over variables. Function predicates are 

translated to equalities of the form f(v1, … , vn)=y. E. g., 

for the rule r(_/T[a, b]) :- p(_/T[a, b, c]) & f(c, y) we 

bind attributes in the head predicate to variables v1 and 

v2, attributes in the class predicate – to variables v3, v4, 

v5, the attribute y – to v6. The rule is translated to the set 

of equalities: v1=v3, v2=v4, f(v5)=v6. A variant of 

congruence closure algorithm is applied to the set of 

equalities to construct congruence classes of terms [22] 

providing a convenient form to represent the set of 

equalities. E.g., from v1=v3, v2=v4, f(v5)=v6 we construct 

two congruence classes {v1, v3} and {v2, v4}. In term of 

this representation we perform analysis of the rule and 

LAV views. Congruence classes collected from LAV 

views referred in the rule (by class predicates) represent 

equalities that are implied by views and, therefore, it is 

safe to remove them from the set of equalities of the 

rule. Then the rule reconstructed from the set of 

equalities will not contain Skolem functions. In this 

way we implement elimination of Skolem functions 

during analysis. 

For the rule obtained in the previous section, during 

semantic analysis we establish that the extended view 

v_SDSS_OData implies equalities between variables 

bound to #x.magnitude and variable bound to 

magnitude, and, therefore, these equalities can be 

removed and the attribute magnitude is used instead of 

#x.magnitude in the rule:  

r (_/R[ra, de, name, name1, ra1, de1])  

:- v_RC_RData(_/CT_RData[name, ra: coord_ra, 

de: coord_de]) & v_SDSS_OData( 

_/CT_OData[magnitude, name1: name, ra1: 

coord_ra, de1: coord_de])  

& ocdColorIndexURG(magnitude, ci) 

& ocdDeltaColorIndexURG(magnitude, dci) 

& xmatch(ra, de, ra1, de1, 45, 45) 

& ra >= 120.0 & ra <= 255.0  

& de >= 4.39 & de <= 5.61 & ci > dci 

Along with Skolem functions elimination, we test 

Body predicate IR Transformed body of the IR 
radioCatalogData(y/RadioCatalogData[name, ra: 

coord.ra, de: coord.de]) 
IR1 

v_RC_RData(_/CT_RData[y:#x, name, ra: coord_ra, 

coord_raError, de: coord_de]) 

opticalCatalogData(x/ OpticalCatalogData[name1, 

ra1: coord.ra, de1: coord.de]) 
IR2 

v_SDSS_OData(_/CT_OData[x:#x, name1: name, ra1: 

coord_ra, de1: coord_de]) 

colorIndexURG(x, ci) IR3 ocdColorIndexURG(x.magnitude, ci) 

deltaColorIndexURG(x, dci) IR4 ocdDeltaColorIndexURG(x.magnitude, dci) 

matchCatalog(ra, de, ra1, de1, 45, 45) IR5 xmatch(ra, de, ra1, de1, 45, 45) 

Table 1 Rewriting of body predicates  



satisfiability of the rule. Additionally, we collect all 

arithmetic predicates found in the constraints of a rule 

and constraints of a view used in the rule. We operate in 

terms of the obtained bindings, and, therefore, there are 

only variables and constants in arithmetic predicates. 

We consider arithmetic predicates <, ≤, ≥, > and 

construct an inequality graph to test satisifiability [1]. 

Also we distinguish inequality graph constructed from 

arithmetic predicates implied by views and use it to 

remove arithmetic predicates with Skolem functions.  

4.3   GAV unfolding 

The first two phases produce a rewriting which can 

refer to GAV views. To obtain this rewriting expressed 

in terms of the source schema we perform GAV 

unfolding. In our approach, it is safe to consider that 

constructed (during the registration process) GAV 

views do not share common functions and local classes. 

In this case, we can perform GAV unfolding of every 

GAV view found in the rule independently. To unfold a 

GAV view for a body predicate we unify the head of 

the GAV view with the body predicate. This unification 

implies a respective transformation of the body of the 

GAV view. Then we substitute the body predicate with 

the transformed body of the GAV view. Function 

predicates with resulting attributes, which are not 

referred in the unified head of the GAV view, are 

removed from the transformed body of the GAV view. 

To distinguish attributes not included in the head of 

GAV view and variables, which occur with the same 

names in few GAV views, we add a unique suffix to all 

variables and such attributes (in our example, we will 

use the suffix “1” for v_RC_RData and the suffix “2” 

for v_SDSS_OData).  

To perform GAV unfolding in the rule obtained in the 

previous section, we unify the head of GAV1  

v_RC_RData(x/CT_RData[name, spIndex, coord, 

coord_ra, coord_raError, coord_de, 

coord_deError])  

:- rcCatalog(x/RCCatalog[name, spIndex: Sp-

Index])  

& calcRA2Deg(x, coord_ra)  

& calcDE2Deg(x, coord_de) 

& calcArcsec2Deg(x, coord_raError) 

& calcArcsec2Deg(x, coord_deError) 

& get_coord(x, coord) 

with the body predicate of the rule  

v_RC_RData(_/CT_RData[name, ra: coord_ra, 

de: coord_de])  

which is replaced with the following transformed body 

of GAV1  

rcCatalog(x1/RCCatalog[name])  

& calcRA2Deg(x1, ra) & calcDE2Deg(x1, de) 

In the same way we unfold v_SDSS_OData, replacing it 

with the following transformed body of GAV2: 

photoPrimary(x2/PhotoPrimary[name1: objID, 

ra1: ra, de1: dec]) & get_magnitude(x2, 

magnitude) 

The result of GAV unfolding gives the following final 

rewriting: 

r (x/R[ra, de, name, name1, ra1, de1]) 

:-rcCatalog(x1/RCCatalog[name])  

& calcRA2Deg(x1, ra) & calcDE2Deg(x1, de) 

& photoPrimary(x2/PhotoPrimary[name1: objID, 

ra1: ra, de1: dec])  

& get_magnitude(x2, magnitude) 

& ocdColorIndexURG(magnitude, ci)  

& ocdDeltaColorIndexURG(magnitude, dci) 

& xmatch(ra, de, ra1, de1, 45, 45) 

& ra >= 120.0 & ra <= 255.0  

& de >= 4.39 & de <= 5.61 & ci > dci 

5   Related work 

Mediation objectives. Distinguishing feature of the 

mediation intention in our work comparing to usually 

considered in the literature [10] is its usage for problem 

solving over heterogeneous distributed information 

sources [4,5,19,20] (integration of data sources is only 

part of the issue). One of the consequencies of such 

objective is that the mediator schema alongside with 

data structure specifications includes specification of 

functions (methods). Refining implementation of the 

mediator functions are identified during registrtaion 

among pre-existing sources (services).  

Schema mapping and view definitions. Schema 

mapping is one of the crucial issues for data integration. 

Clio project [9] for data integration and data exchange 

supports generation of correspondences between 

schemas and mappings (queries) between schemas. 

Given a pair of schemas, the correspondence engine 

generates and manages a set of candidate 

correspondences between the two schemas (purely 

syntactic, based on matching of terms, field names, 

etc.). The mapping engine supports creation, evolution 

and maintenance of mappings between pairs of 

schemas. A mapping is a set of queries from a source 

schema to a target schema that will translate source data 

into the form of the target schema. These tasks are 

interactive, semi-automatic. Currently [9] relational and 

hierarchical XML schemas are considered in Clio.  

Another method, AutoMed [12], is a framework 

supporting schema transformation for data integration 

applying LAV, GAV, GLAV approaches. The 

framework consists of a low-level hypergraph-based 

data model and a set of primitive schema 

transformations defined for this model. Higher level 

data models and primitive schema transformations for 

them are defined in terms of this lower-level common 

data model. Pathway is a transformation composed of 

primitive transformations. This syntactic technique is 

semi-automatic, it can be specialized for various 

structured data models.  

The work presented in our paper takes completely 

different, semantic information model transformation 

approach. First, for information integration an 

extensible canonical information model is introduced 

(in particular, its kernel is a hybrid object-

oriented/frame-based information model [13]). For any 

source model (defined by syntax and semantics of two 

languages – information description language and 

information manipulation language) a mapping into an 

extension of the canonical model is defined. This 

mapping is reversible [16,15] and is supported by the 



  

respective compiler (that is used also in process of 

wrapper generation). Term rewriting approach provided 

by Meta Environment [3] is applied for compilers 

generation. A relevance of any source schema to the 

mediator is established ontologically [15,16]. A relevant 

source schema expressed in some source model is 

compiled into the canonical schema. The source schema 

refines [16] the canonical model schema. The 

refinement of the schema mapping is formally checked 

[25]. Now, having schemas expressed in the same 

notation (canonical model) a LAV/GLAV registration 

of the source schema in the mediator schema is done 

relying on the ontological relationships between types, 

attributes, functions, classes and applying type calculus 

[14] to form the LAV/GLAV mapping rules as defined 

in section 3.4. 

Query rewriting. The state of the art in the area of 

answering queries using views ranging from theoretical 

foundations to algorithm design and implementation has 

been surveyed in [10]. Additional evaluations of the 

query rewriting algorithms can be found in other papers 

[8,27]. Inverse rules algorithms are recognized due to 

their conceptual simplicity, modularity and ability to 

produce the maximally-contained rewriting in time that 

is polynomial in the size of the query and the views. 

Rewriting unions of general conjunctive queries using 

views [27] compares favorably with existing 

algorithms, it generalizes the MiniCon [23] and Ujoin 

[24] algorithms and is more efficient than the Bucket 

algorithm. Finding contained rewritings of union 

queries using general conjunctive queries (when the 

query and the view constraints both may have built-in 

predicates) are important properties of the algorithm 

[27]. No concern of object query semantics in typed 

environment has been reported. Main contribution of 

our work is providing an extension of the query 

rewriting approach using views for the typed subject 

mediation environment. In contrast with [27], in [17] 

we showed how to extend conjunctive queries with 

object SPJ semantics based on type refinement 

relationship and type calculus. Our LAV-based 

approach [17] shows that refinement of the mediator 

class instance types by the source class instance types is 

the basic relationship required for establishing query 

containment in the object environment. In current 

paper, preserving the typed environment, we show 

specifically how LAV/GLAV technique is used to 

implement the source/mediator schema conflict 

resolving functions. The heads of the LAV view 

definition rules may contain any source schema query 

resolving conflict through a concretizing view 

expressed as a GAV rule over respective source. To 

finalize a rewriting, this source view is to be unfolded 

according to the GAV approach (section 4). 

6   Conclusion  

To operate huge, diverse and distributed data volume, to 

organize efficient problem solving over it, the 

collaborative scientific enterprises (like VO in 

astronomy) now are created. New approaches to 

problem solving organization over multiple distributed 

collections of data sources and services are required. 

We distinguish between two principally different such 

approaches: 1) moving from sources to problems and 2) 

moving from a problem to the sources. We emphasize 

here the second approach (problem-driven) that 

supports an interaction between an application and 

sources on the basis of the application domain 

definition (description of the mediator). Description of 

the mediator does not depend on the relevant sources 

the set of which might be changed arbitrarily during life 

time of the mediator. 

In this paper we focus on results of research and 

experimental work oriented on problem-driven subject 

mediation emphasizing aspects of LAV/GLAV 

information sources integration in the mediator. The 

approach considered has the following distinguishing 

features: typed, object canonical model kernel is used; a 

technique of refining mapping of source information 

models into extensible canonical one is provided; 

registration in a mediator of the relevant source is done 

so that an ontologically relevant mediator type should 

be provably refined by a source type or by a 

composition of such types (the conflict resolving 

functions are to be specified, if required); rewriting of 

non-recursive logical programs containing strongly 

typed rules is applied. Using astronomical example 

taken from the Russian VO context, we have shown the 

techniques of information source registration at the 

mediator and query rewriting in a typed mediation 

environment applying LAV/GLAV approach.  

We clearly show that usage of mediation technique for 

problem solving over heterogeneous distributed 

information sources requires application of typed 

(object) canonical model and an ability to semantically 

identify refining implementation of the mediator during 

registration of relevant sources (services). We have 

developed an approach for mapping source information 

models into extensible canonical model based on 

refinement check of the schema mapping [16]. This 

approach has been checked over various kinds of 

information models [16,18,26]. Obtaining schemas 

expressed in the same notation, we show in this paper 

how LAV/GLAV registration of the source schema in 

the mediator schema is done relying on the ontological 

relationships between types, attributes, functions, 

classes and applying type calculus [14] to form the 

LAV/GLAV mapping rules as defined in 3.4. 

Regarding query rewriting, main contribution of our 

work is applying rewriting to the typed subject 

mediation environment. Our LAV-based approach [17] 

shows that refinement of the mediator class instance 

types by the source class instance types is the basic 

relationship required for establishing query containment 

in the object environment. In the current paper, 

preserving the typed environment, we show how 

LAV/GLAV technique is used to implement the 

source/mediator schema conflict resolving functions. 

For practical purposes the implemented mediation 

approach is planned to be used in a synergy with the 

AstroGrid VO infrastructure [2]. 
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