

Source Registration and Query Rewriting Applying

LAV/GLAV Techniques in a Typed Subject Mediator

Dmitry Briukhov, Leonid Kalinichenko, Dmitry Martynov

Institute of informatics problems RAS

{brd, leonidk}@ipi.ac.ru, domartynov@gmail.ru

 Abstract

New methods and tools for application

development in collaborative scientific

enterprises (like Virtual Observatories (VO))

over multiple distributed sources of data and

programs are required. In this paper we focus

on results of research and experimental work

oriented on problem-driven subject mediation

emphasizing aspects of LAV/GLAV

information sources integration in the

mediator. The approach considered has the

following distinguishing features: typed, object

canonical model is used instead of usually

applied relational one; a technique of refining

mapping of source information models into

extensible canonical one is provided;

registration in a mediator of a relevant source

is done so that a mediator type should be

provably refined by a relevant source type or

by a composition of such types (the conflict

resolving functions are to be specified, if

required); rewriting of non-recursive logical

programs containing strongly typed rules is

applied. These features provide methodological

context for the current paper that is focused on

description of the role the LAV/GLAV

approach plays in the mediator. Using

astronomical example taken from the Russian

VO context, we show the technique of

information source registration at the mediator

and query rewriting technique in a typed

specification environment applying

LAV/GLAV approach.

Keywords: subject mediator, LAV, GLAV,

canonical typed model, refinement, query

rewriting, source registration.

1 Introduction

In this paper
i
 subject mediation as an instrument for

problem solving over multiple heterogeneous

information sources (data and services) will be

emphasized. To be specific, we consider subject

mediation in e-science that will increasingly be carried

out through distributed global collaborations enabled by

the Internet. Typically, a feature of such collaborative

scientific enterprises is that they will require access to

very large sets of data sources, large scale computing

resources and high performance visualization providing

a feedback to the scientists. For instance, in astronomy

such enterprises take a form of Virtual Observatories

(VO). To get a consensus on the standards of the

enterprise information infrastructures they create

alliances (e.g., IVOA in astronomy [11]). Further we

shall refer to VO as an example of a scientific enterprise

having in mind that the approaches discussed are

applicable to various branches of science.

Various scientific problems are to be supported by VO,

each of them considering in its own, specific context

(probably, overlapping with contexts of other

problems). Heterogeneous information sources of

various kinds relevant to VO include data sources,

service sources, process sources, ontological sources.

Many of such sources are autonomous and evolve with

time. A set of sources relevant to a specific problem is

quite rapidly changing. The technologies applied for

creating relevant sources while observing the Universe

and to support them are also rapidly evolving.

Justifiable identification of sources relevant to a

problem, reaching semantic integration of various kinds

of them in context of the problem, making problem

solving information system stable in the rapidly

evolving world of relevant sources constitute serious

challenges. New methods and tools for VO application

development over multiple distributed collections of

data and programs are required.

We emphasize two principally different approaches

to the integrated representation of multiple information

sources for a scientific problem: 1) moving from

sources to problems (an integrated schema of multiple

sources is created independently of a definition of

specific application) and 2) moving from a problem to

the sources (a description of an application subject

domain (in terms of concepts, data structures, functions,

processes) is created, into which sources relevant to the

application are mapped). The first approach driven by

information sources is not scalable with respect to the

number of sources, does not make semantic integration

of sources in a context of specific application possible,

does not lead to justifiable identification of sources

Proceedings of the 9th Russian Conference on Digital

Libraries RCDL’2007, Pereslavl, Russia, 2007

relevant to specific problem, does not provide the

required information system stability w.r.t. evolution of

the observation sources (e.g., appearance of a new

information source relevant to the problem lead to

reconsideration of the integrated schema).

The second approach (problem- or application-driven)

assumes creation of subject mediator that supports an

interaction between an application and sources on the

basis of the application subject domain definition

(description of the mediator). For problem solving the

subject mediator approach removes the disadvantages

mentioned for the approach driven by information

sources.

Two approaches for the heterogeneous data sources

integration are known as Global-as-View (GAV) and

Local-as-View (LAV). According to GAV [10,21] a

global schema is defined in terms of the pre-selected

sources. LAV [10,21] is opposite: sources are defined

as views over the mediator schema. It is easy to see that

technically GAV corresponds to the information

sources driven approach, and LAV – to the problem

driven approach. Later a variation of LAV appeared

(called GLAV) [7] allowing the head of the LAV view

definition rules to contain any source schemas query

and hence is able to express the case where a source

schemas are used to define the global schema constructs

(GAV).

In this paper we focus on some results of research and

experimental work oriented on problem-driven subject

mediation emphasizing aspects of LAV/GLAV

information sources integration in the mediator. The

problem-driven approach we are focused on has the

following distinguishing features comparing to the

usually considered in the information integration

context, including:

 the problem solving over multiple heterogeneous

distributed sources (data and services) is emphasized

(not just integration of sources) [4,5,19,20];

 this feature imposes specific requirements on the

canonical mediator model exploited (typed, object

data model is used [13] instead of usually considered

relational one);

 the notion of extensible canonical information model

is introduced [16,15] as a unifying model into which

various data and service models (further source

models) are mapped;

 a technique of refining mapping of source models

into extensible canonical one is provided (kernel of

the canonical model is fixed as a hybrid object-

oriented/frame-based model; for each source model

an extension of canonical model is provided so that

the kernel together with extension should be refined

by a source data model, the refining condition is

formally justified [18,25,26]);

 a mediator is defined in a canonical model,

independently of the information sources. Mediator

defines a domain of the problems to be solved. The

definition contains non-functional requirements

(expressed through the mediator metadata – e.g., data

quality requirement), ontological specifications,

specification of types, classes, functions, constraints,

processes for the entities involved;

 for registration in a mediator the relevant source

identification is provided through the selection from

various registries of the candidates satisfying non-

functional requirements (applying metadata), as well

as ontologically, structurally and behaviorally

matching to respective specifications of a mediator

[6];

 a type calculus is applied [14] to provide source

schema mapping (expressed in canonical model) into

the mediator schema during the registration of

relevant to the mediator sources in the mediator.

The features listed above have been described in the

cited publications elsewhere. These features provide

methodological context for the current paper that is self-

contained and focused on description of the role the

LAV/GLAV approach plays in the mediator. Using

astronomical example (distant galaxies identification

problem) taken from the Russian VO context [4], we

focus on the techniques of information source

registration at the mediator and query rewriting. Both

techniques work in a typed mediation environment

applying LAV/GLAV.

2 Mediator example definition

In the rest of the paper we will use the example of a

subject mediator for distant galaxies discovery problem

[4] to demonstrate our techniques. Study of properties

of distant galaxies (being on the early stage of

evolution) allows to justify cosmological theories. An

approach used here is based on distant galaxies

detection from radio source samples by matching with

optical objects. The candidate object selection

procedure may include a few steps to select objects: by

radio properties, - angular size (for considerable

redshifts usual object angular sizes are in range 1 arcsec

to 1 arcmin), morphology (powerful radio galaxies are

considered), flux limit (objects considered have fluxes

about 100 mJy (on average)), spectral index (steep

spectrum sources are preferred), and optical properties -

color dropouts and magnitude limits, galaxy position on

K-z Hubble diagram and selection by X-ray emission

[4]. Definitions of the subject mediator types and

classes containing respective information are given in

2.2.

2.1 Canonical information model

For the canonical model of a mediator a hybrid frame-

based, object-oriented model (Synthesis language [13])

is used. The canonical model provides support of wide

range of data - from untyped data on one end of the

range to strictly typed data on another. Typed data

should conform to the abstract data type (ADT)

specifications prescribing behavior of their instances by

means of the type operations. ADT describes interface

of a type whose signature defines names and types of its

operations. Classes are collections of instances of

respective types. Subtyping relationship is supported by

the model.

Formulae in the language are used to specify queries,

rules and constraints. To specify formulae a variant of a

typed (multisorted) first order predicate logic language

is used. Predicates in formulae correspond to collections

(such as sets and bags of non-object instances), classes

treated as set subtypes with object-valued instances,

functions. ADTs of instance types of collections and

classes should be defined. Rules look as:

Q(v/Tv):- C1(v1/Tv1), … , Cn(vn/Tvn),

F1(t1,y1), … , Fm(tm,ym), B

where in the body (having SPJ semantics) Ci is a class

predicate, Fi is a functional predicate and B is a

constraint, that is a conjunction of predicates over the

variables v, v1, … , vn, typed by Tv, Tv1, … , Tvn , or

output variables y1 y2  …  ym of functional atoms.

Each atom Ci(vi/Tvi) or Fj(tj,Yj) (i = 1, … , n; j = 1,

…,m) is called a subgoal. ti is a sequence of terms

(might be empty) corresponding to input parameters of

a function. Rules can be combined in program blocks.

2.2 Mediator schema specification

-ra : real

-de : real

-raError : real

-deError : real

«type»

CoordEQJ
-spatialCoord

1 1

-spIndex : real

RadioCatalogData

+colorIndexURG()

+deltaColorIndexURG()

OpticalCatalogData

+matchCatalog()

-name : string

CatalogData

-magValue : real

-magError : real

-filter : string

«type»

Magnitude

-magnitude*

1

Fig.1 Specification of the mediator schema types

Fig.1 shows a fragment of the mediator schema module

for distant galaxy discovery. It includes observed

scientific data holdings in radio or optical catalogs

(classes RadioCatalogData and OpticalCatalogData).

The superclass CatalogData contains objects from both

catalogs. It has the attribute spatialCoord (which

defines coordinates of an astronomical object), the

attribute name (which defines the name of the object in

the catalog) and the method matchCatalog(), which

returns true if two points in space are close to each

other.

The functions have the following signatures:

matchCatalog: {in: function; params: {

+ra1/real, +de1/real, ra2/real, +de2/real,

+rad1/real, +rad2/real, -returns/boolean};

};

colorIndexURG: {in: function;

 params: {-returns/real};

};

deltaColorIndexURG: {in: function;

 params: {-returns/real};

};

Autonomous mediator functions are defined in the

module I_Mediator with the following functions:

{xmatch; in: function; params:{ +ra1/real,

+de1/real, ra2/real, de2/real, +rad1/real,

+rad2/real, -returns/boolean};},

{colorIndexURG; in: function; params: {

+magnitude/{set; type_of_element:

Magnitude;}, -returns/real};},

{deltaColorIndexURG; in: function;

params: { +magnitude/{set; type_of_element:

Magnitude;}, -returns/real};}

}

3 Information source registration

approach

Each mediator supports the process of systematic

discovery and registration of sources uniformly

expressing their definitions in terms of the mediator.

Such registrations can be done concurrently, at any time

and are semi-automatic.

Discovery of relevant data types (classes) in sources is

based on three models: metadata model describing the

information sources (according to the IVOA standard

[4,11]), ontological model defining concepts of a

subject domain [15] and canonical model providing for

definition of structure and behavior of objects of the

subject domain and of the sources.

Source registration in a mediator applying canonical

model is a process of specification transformation that

includes decomposition of the mediator specifications

into consistent fragments, search among relevant

sources of the appropriate type fragments considered as

candidates for refinement by them of the mediator

types, constructing expressions defining source classes

as compositions of the mediator classes. It is said that

specification A refines specification D, if it is possible

to use A instead of D so that the user of D does not

notice this substitution [14]. The fact of specification

refinement can be proved in the first order logic due to

defining a mapping of the mediator canonical model

into formal specification [25]. To manipulate

specifications during source registration process a

specification calculus has been defined [14]. In the

calculus a type specification can be decomposed into set

of type reducts that can be used as fragments for

refinement construction and composition. An operation

of constructing common (and most common) reduct for

a pair of type specifications T1 and T2 has been defined

(a common reduct for types T1, T2 is such reduct R(T1)

that there exists a reduct R(T2) such that R(T2) is a

refinement of R(T1)). In the type algebra the operations

for type specification compositions (meet and join) have

also been defined [14]. During registration, concretizing

types reconciling the conflicts (of values, structures,

behaviors) are defined so that an instance type of the

mediator class (or its reduct) would be refined by an

instance type of the relevant source class (or its reduct).

The main registration result is a GLAV expression

defining how a source class is determined as a

composition of the mediator classes. The registration

approach is intended to cope with a dynamic, possibly

incomplete set of sources. Sources may change their

exported schemas, become unavailable from time to

time. In process of sources evolution a specification of

mediator remains stable, only such GLAV expressions

need to be modified.
Process of information source registration contains the

following activities:

1. select the source candidates satisfying the non-

functional mediator requirements (applying metadata

and conventional metadata registries);

2. from the candidates obtained at the first step select

the sources ontologically relevant to respective

specifications of a mediator;

3. for a pair of ontologically relevant types in source

and in mediator construct their most common reduct.

In case of a conflict between type specifications the

conflict resolving functions are to be specified;

4. for each source class construct a GLAV view for this

source class and all its ontologically relevant

mediator classes.

These activities are semi-automated and supported by

the registration tool.

-name : string

-RAh : integer

-RAm : integer

-RAs : real

-e_RAs : real

-DE : string

-DEh : integer

-DEm : integer

-DEs : real

-e_DEs : real

-S76 : real

-e_S76 : real

-S31 : real

-e_S31 : real

-Sp-Index : real

RCCatalog

-objID : integer

-ra : real

-dec : real

-u : real

-err_u : real

-g : real

-err_g : real

-i : real

-err_i : real

-r : real

-err_r : real

-z : real

-err_z : real

PhotoPrimary

(a) (b)

Fig.2 Specification of SDSS (a) and RC Catalog (b)

schemas fragments

3.1 Searching for the candidate sources

The process of searching for the candidate sources to be

registered at the mediator starts with the metadata

search. In this paper we omit the details of this process

and assume that two relevant sources have been

identified: RC catalog – catalog of radio objects [4] and

SDSS (www.sdss.org) – survey of one-quarter of the

entire sky, in 5 spectral ranges from ultraviolet to

infrared.

Fig.2a shows the fragment of the specification of SDSS

optical catalog, the table PhotoPrimary after mapping it

into the canonical model as a class definition. Fig.2b

shows the fragment of the specification of RC radio

catalog. Basic attributes for these catalogs are the

following: objID and name specify the name (identifier)

of an object in the catalog, ra, de, RAh, RAm, RAs, DE,

DEh, DEm, DEs specify the coordinates of an object in

space.

3.2 Identification of relevant schema elements

The process of identifying of relevant elements (classes,

types, attributes, functions) in mediator and candidate

source schemas is based on an ontology integration

process [6]. Here we omit the details of this process.

The result of this phase is a set of ontologically relevant

elements. A sample of relevant elements in the mediator

and SDSS catalog specifications follows:

opticalCatalogData ~ photoPrimary

OpticalCatalogData ~ PhotoPrimary

CatalogData.name ~ PhotoPrimary.objID

CoordEQJ.ra ~ ra

CoordEQJ.de ~ dec

Magnitude.magValue ~ u

Magnitude.magError ~ err_u

3.3 Most common reduct construction

In our example the source type PhotoPrimary is

relevant to 3 mediator types - OpticalCatalogData,

CoordEQJ and Magnitude. For each of these pairs we

construct a most common reduct and respective

concretizing reduct. The specification of such reducts

for the pair PhotoPrimary and OpticalCatalogData

types follows:

{R_OData_SDSS; in: reduct;

 metaslot of: OpticalCatalogData;

 taking: {name, coord, magnitude};

 c_reduct: CR_OData_SDSS;

 end;

};

{CR_OData_SDSS; in: c_reduct;

 metaslot of: PhotoPrimary;

 taking: {objID};

 reduct: R_OData_SDSS;

 end;

simulating: {

R_OData_SDSS.name ~ CR_OData_SDSS.objID,

R_OData_SDSS.coord ~ R_OData_SDSS.get_coord,

R_OData_SDSS.magnitude ~

R_OData_SDSS.get_magnitude

;

get_coord: {in: function; params:{ -returns/

{set; type_of_elements: CoordEQJ;}};

 {{ returns’ = this/CR_Coord_SDSS }}

};

get_magnitude: {in: function; params:{ -

returns/ {set; type_of_elements:

Magnitude;}};

 {{ returns’ = this/CR_Magnitude_SDSS }}

 };

};

The most common reduct R_OData_SDSS defines the

fragment of mediator type OpticalCatalogData which

can be refined by the fragment of source type defined

by concretizing reduct CR_OData_SDSS. Slot taking

includes a list of attributes taken from the type being

reduced.

The line R_OData_SDSS.name ~

CR_OData_SDSS.objID in the slot simulating indicates

that the attribute name of the mediator type

OpticalCatalogData corresponds to the attribute objID

of the source type PhotoPrimary.

The line R_OData_SDSS.coord ~

CR_OData_SDSS.get_coord in the slot simulating

indicates that the attribute coord of the mediator type

OpticalCatalogData is calculated from attributes of the

source type PhotoPrimary by the conflict resolving

function get_coord.

Conflict resolving functions (such as get_coord and

get_magnitude) may resolve various kinds of conflicts

between the specifications of mediator and source

types.

Similarly we construct most common reducts

R_Coord_SDSS and CR_Coord_SDSS (for

PhotoPrimary and CoordEQJ types), and

R_Magnitude_SDSS and CR_Magnitude_SDSS (for

PhotoPrimary and Magnitude types).

3.4 GLAV views construction

The process of heterogeneous data sources registration

in the subject mediator is based on LAV/GLAV

approach. This approach allows the head of the LAV

view definition to contain any source schemas query

and hence is able to express the case where a source

schemas are used to define the global schema constructs

(GAV). The GAV approach allows to specify functions

resolving various kinds of conflicts between mediator

and source specifications. It also allows to define rules

for transformation of query results from source to

mediator.

Thus the registration process consists of constructing a

set of GLAV views, having the following form:

V(v/Tv):-Cm1(v1/Tv1),…,Cmn(vn/Tvn),

Fm1(X1,Y1),…,Fmm(Xm,Ym),Bm
(LAV rule)

V(v/Tv) :- Cs1(v1/Tv1),…,Csn(vn/Tvn),

Fs1(X1,Y1),…,Fsm(Xm,Ym), Bs
(GAV rule)

where Cmi is a mediator class predicate, Fmi is a

mediator functional predicate, Csi is a source class

predicate, Fsi is a source functional predicate or conflict

resolving function, Bm and Bs are conditions.

We start with constructing partial views for each pair of

ontologically relevant mediator and source classes.

Then for each source class we compose all its partial

views into complete view.

In our example the source class photoPrimary

corresponds to the mediator class opticalCatalogData.

As it was shown in 3.3, its instance type PhotoPrimary

has 3 relevant mediator types (and 3 common reducts

R_OData_SDSS, R_Coord_SDSS and

R_Magnitude_SDSS corresponding to these types).

Therefore we first construct new composed types

CT_OData and CT_SDSS as a join of the common

reducts and their respective concretizing reducts.

Operation join T1 | T2 of the type specification calculus

[14] yields the “join” of specifications of the operand

types T1 and T2 .

CT_OData[name, coord, coord_ra, coord_de,

magnitude, magnitude_magValue,

magnitude_magError, magnitude_filter] =

R_OData_SDSS[name, coord, magnitude] |

R_Magnitude_SDSS[magnitude_magValue:

magValue, magnitude_magError:magError,

magnitude_filter:filter] |

R_Coord_SDSS[coord_ra:ra, coord_de:de]

CT_SDSS[objID, get_coord, get_magnitude, u,

err_u, g, err_g, i, err_i, r, err_r, z,

err_z, get_magValue, get_magError,

get_filter, ra, dec] = CR_OData_SDSS[objID,

get_coord, get_magnitude] |

CR_Magnitude_SDSS[u, err_u, g, err_g, i,

err_i, r, err_r, z, err_z, get_magValue,

get_magError, get_filter] |

 CR_Coord_SDSS[ra, dec]

Then using this definition, we construct a GLAV view

v_SDSS_RData for source class photoPrimary and

mediator class opticalCatalogData.

First we specify a LAV rule:

v_SDSS_OData(x/CT_OData[name, coord,

coord_ra, coord_de, magnitude,

magnitude_magValue, magnitude_magError,

magnitude_filter])

:-

opticalCatalogData(x/OpticalCatalogData

[name, coord, magnitude,

coord_ra:coord.ra, coord_de:coord.de,

magnitude_magValue: magnitude.magValue,

magnitude_magError: magnitude.magError,

magnitude_filter: magnitude.filter])

(LAV1)

Instance type of the class predicate v_SDSS_OData is

CT_OData. Attributes from the OpticalCatalogData,

Coord and Magnitude types are inserted into the class

predicate.

Then we specify a GAV rule:

v_SDSS_OData(x/CT_OData[name, coord,

coord_ra, coord_raError, coord_de,

coord_deError, magnitude,

magnitude_magValue,

magnitude_magError, magnitude_filter])

:- photoPrimary(x/CT_SDSS[name:objID,

coord_ra: ra, coord_de: dec])

& get_coord(x, coord)

& get_magnitude(x, magnitude)

& get_magValue(x, magnitude_magValue)

& get_magError(x, magnitude_magError)

& get_filter (x, magnitude_filter)

(GAV1)

Reduct in the class predicate v_SDSS_OData contains

all attributes from the composed type CT_OData.

Reduct in the class predicate photoPrimary includes

only attributes from the composed type CT_SDSS. Also

we rename source attributes as view attribute names if

needed. Such renaming is taken from slot simulating at

a concretizing reduct specification. E.g., the reduct

element name: objID defines that the objID attribute is

renamed to name, according to the correspondence

R_OData_SDSS.name ~ CR_OData_SDSS.objID

obtained at the concretizing reduct CR_OData_SDSS

specified above. Then for each function from the

composed type CT_SDSS a respective function

predicate is appended to the GAV view body. E.g., the

function get_coord in the appended predicate is taken

from the CR_OData_SDSS concretizing reduct and the

result attribute name is determined as coord, the name

of the attribute taken from the correspondence

R_OData_SDSS.coord ~ CR_OData_SDSS.get_coord

obtained from the concretizing reduct CR_OData_SDSS

specified above.

In our example a source class photoPrimary

corresponds to only one mediator class

opticalCatalogData, so we do not need to construct a

new view as a composition of partial views.

In the same way we construct GLAV view for RC

catalog:

 CT_RData = R_RData_RC | R_Coord_RC

 CT_RC = CR_RData_RC | CR_Coord_RC

v_RC_RData(x/CT_RData[name, spIndex,

coord, coord_ra, coord_raError,

coord_de,coord_deError])

:- radioCatalogData(

x/RadioCatalogData[name,

spIndex,coord, ra: coord.ra, raError:

coord.raError, de: coord.de, deError:

coord.deError])

(LAV2)

v_RC_RData(x/CT_RData[name, spIndex,

coord, coord_ra, coord_raError,

coord_de, coord_deError])

:- rcCatalog(x/CT_RC[name, spIndex:

Sp-Index, coord_ra, coord_raError,

coord_de, coord_deError])

& get_coord(x, coord)

(GAV2)

4 Query program rewriting

To support GLAV approach we have developed a query

rewriting algorithm composed of three phases: formal

rewriting and semantic analysis implementing LAV

approach followed by the third phase - GAV-views

unfolding. For non-recursive query programs consisting

of several rules the rewriting is applied to each rule

separately. Implementation of the LAV approach is

based on a variant of the inverse-rule algorithm [27]

extended for typed query language [17]. To the results

of the formal rewriting phase, we apply semantic

analysis that checks a satisfiability of the rule and

eliminates Skolem functions.

4.1 Formal rewriting

The formal query rewriting is based on a notion of the

inverse rule (further, IR). We consider two kinds of IRs:

class-to-class IRs and function-to-funtion IRs. Class-to-

class IRs are obtained from a LAV view definition as

pairs of the head of the view and a class predicate from

the body of the view. The class-to-class IR has the form

C(x/T)  V(_/R) where the predicate C(x/T) is called a

head of the IR and V(_/R) is a body of the IR

(underscore denotes anonymous variable). For a view

V(_/R) :- C1(x1/T1) & … & Cn(xn/Tn) & F1(t1, y1) & …&

Fm(tm, ym) & B we construct class-to-class IRs C1(x1/T1)

)  V(_/R), … , Cn(xn/Tn))  V(_/R). IRs define how a

particular body predicate expressed in terms of the

mediator schema can be rewritten into a predicate

expressed in terms of GAV views and the source

schema. E. g., occurrences of C(x/T) in a rule can be

replaced with V(_/R) to obtain a contained rewriting if

there is an IR C(x/T))  V(_/R) and reducts T and R

designate ADTs related so that R refines T. Generally, R

does not include all attributes defined in the body of the

view and it should be extended by the skolemization.

Since in our data model attributes are defined as

respective get-functions, we consider the get-functions

of extended attributes as Skolem functions (and mark

them with # symbol). E. g., in the view v(_/R[a, b]):-

p(x/Tp[a, b]) & q(y/Tq[b, c]) & f(x, z), the head reduct

does not include attributes x, y, c and z, hence it is

extended to the reduct R[a, b, x:#x, y:#y, c:#c, z:#z].

Then two IRs are constructed: p(x/Tp[a, b])  v(_/R[a,

b, x:#x]) and q(y/Tq[b, c])  v(_/R[b, y:#y, c:#c]).

In our example, from the view LAV1 we construct the

following class-to-class IR:

radioCatalogData(x/RadioCatalogData[

name, spIndex, coord, ra: coord.ra,

raError: coord.raError, de: coord.de,

deError: coord.deError, flux])<-

v_RC_RData(_/CT_RData[x:#x, name,

spIndex, coord, coord_ra,

coord_raError, coord_de,

coord_deError, flux])

(IR1)

and from the view LAV2 we construct the following

class-to-class IR:

opticalCatalogData(x/OpticalCatalogData

[name, coord, coord_ra: coord.ra,

coord_de: coord.de, magnitude]) <-

v_SDSS_OData(_/CT_OData[x:#x, name,

coord, coord_ra, coord_de, magnitude])

(IR2)

Function-to-function IRs are defined directly during the

source registration. The function-to-function IR is a

formula, which has the form all x1/T1, … , xn/Tn F(t, y)

 G(s, y) where x1, … , xn are variables typed by types

T1, … , Tn, t and s are terms over these variables, and y

is the resulting attribute. Function-to-function IRs are

used to rewrite function predicates similarly to class-to-

class IRs used to rewrite class predicates.

In our example, there are three function-to-function IRs

defined during the registration process:

all x/OpticalCatalogData

colorIndexURG(x, ci)

<-ocdColorIndexURG(x.magnitude,ci)

(IR3)

all x/OticalCatalogData

deltaColorIndexURG(x, dci)

<-ocdDeltaColorIndexURG(x.magnitude,dci)
(IR4)

all ra1/real, de1/real, ra2/real,

de2/realb, rad1/real, rad2/real

matchCatalog(ra1,de1,ra2,de2,rad1,rad2,b)

<- xmatch(ra1,de1,ra2,de2,rad1,rad2,b)

(IR5)

The formal rewriting is applied to the body of a rule.

For each body predicate which is not a built-in

predicate we choose an IR such, that its head can be

unified with this body predicate. The unification of the

head of the IR with the body predicate implies the

following transformation of the body of the IR.

A class-to-class IR C(x/T[x1/T1:t1, … , xn/Tn:tn]) 

V(_/R[x/T:y, x1/T1:y1, … , xn/Tn:yn]), where t1, …, tn are

attribute paths, can be unified with a body predicate

C’(z/T
’
[z1/S1:t1.s1, … , zk/Sk:tk.sk]), where k≤n, C is a

subclass of the class C’, Si is a subtype of Ti, and s1, … ,

s2 are attribute paths. The transformed body of the IR is

constructed as the following class predicate:

V(_/R[z/T:y, z1/S1:y1.s1, … , zk/Sk:yk.sk]).

A function-to-function IR all x1/T1, … , xn/Tn F(t, y) 

G(s, y) can be unified with a body predicate F(t’, z) if a

unification of terms t and t’ can be established as a

conjunction of equalities predicates x1=t’1 & … &

xn=t’n & E1 & … & Ek, where each variable xi is unified

with a term t’i and Ej are equalities that equate subterms

tj (subterm of t) and t’j (subterm of t’) providing their

unification. The transformed body of the IR is

constructed as a conjunction of a function predicate

G(s’, z) & E1 & … & Ek where s’ is constructed from s

replacing all occurrences of x1, …, xn with terms t1, … ,

tn. E. g., the function-to-function IR all x/real f(45, x, y)

 g(x,y) can be unified with f(a, b, c) and the

transformed body of the IR is constructed as g(b, c) & a

= 45.

For a given rule Q(_/R) :- C1(x1/T1) & … & Cn(xn/Tn) &

F1(t1, y1) & …& Fm(tm, ym) & B and a collection of IRs,

where unification of a class-to-class IR with a body

predicate Ci(xi/Ti) implies transformation of the body of

the IR: Vi(_/Ri), and unification a function-to-function

IR with the body predicate Fj(tj, yj) implies

transformation of the body of the IR: Gj(sj, yj) & Ej, the

following rewriting is constructed: Q(_/R) :- V1(_/R1) &

… & Vn(_/Rn) & G1(s1, y1) & …& Gm(sm, ym) & E1 & …

& Em & B. The constructed rewriting is a contained

rewriting of the initial rule (the limit of the paper size

does not permit to include the proof of this statement).

Consider the following rule for our example:

r(_/R[ra, de, name, name1, ra1, de1])

:-radioCatalogData(y/RadioCatalogData[name,

ra: coord.ra, de: coord.de]) &

opticalCatalogData(x/OpticalCatalogData[name

1, ra1: coord.ra, de1: coord.de])

& colorIndexURG(x, ci)

& deltaColorIndexURG(x, dci)

& matchCatalog(ra, de, ra1, de1, 45, 45)

& ra >= 120.0 & ra <= 255.0 & de >= 4.39 &

de <= 5.61 & ci > dci

This rule is a part of the problem solving. We get

astronomical objects contained both in radio catalog

and optical catalog applying cross-match function,

having coordinates in a given range, and satisfying the

specified condition with the methods colorIndexURG

and deltaColorIndexURG.

Table 1 describes the formal rewriting applied to the

body of this rule (body predicates of the rule are listed

in the first column, the collection of chosen IRs, which

are unified with the body predicates, are listed in the

second column and implied transformations of the

bodies of the IRs are listed in the third column).

After the unifications and transformations have been

performed, the following rewriting of the rule is

constructed from the transformed bodies of the chosen

IRs:

r (_/R[ra, de, name, name1, ra1, de1])

:- v_RC_RData(_/CT_RData[y:#x, name, ra:

coord_ra, de: coord_de])

& v_SDSS_OData(_/CT_OData[x:#x, name1: name,

ra1: coord_ra, de1: coord_de])

& ocdColorIndexURG(x.magnitude, ci)

& ocdDeltaColorIndexURG(x.magnitude, dci)

& xmatch(ra, de, ra1, de1, 45, 45)

& ra >= 120.0 & ra <= 255.0 & de >= 4.39

& de <= 5.61 & ci > dci

4.2 Semantic Analysis

Since some obtained rewritings may contain Skolem

functions and unsatisfiable constraints we should apply

additional analysis to derive rules without Skolem

functions and filter out unsatisfiable rules.

During this phase we track atomic values of all terms

found in the rule and bind them to variables. For a term

t, which has a non-scalar type, an ADT with attributes

a1, … , an, we bind to variable terms t.a1, … , t.an

recursively. Projections and joins are translated to a set

of equalities over variables. Function predicates are

translated to equalities of the form f(v1, … , vn)=y. E. g.,

for the rule r(_/T[a, b]) :- p(_/T[a, b, c]) & f(c, y) we

bind attributes in the head predicate to variables v1 and

v2, attributes in the class predicate – to variables v3, v4,

v5, the attribute y – to v6. The rule is translated to the set

of equalities: v1=v3, v2=v4, f(v5)=v6. A variant of

congruence closure algorithm is applied to the set of

equalities to construct congruence classes of terms [22]

providing a convenient form to represent the set of

equalities. E.g., from v1=v3, v2=v4, f(v5)=v6 we construct

two congruence classes {v1, v3} and {v2, v4}. In term of

this representation we perform analysis of the rule and

LAV views. Congruence classes collected from LAV

views referred in the rule (by class predicates) represent

equalities that are implied by views and, therefore, it is

safe to remove them from the set of equalities of the

rule. Then the rule reconstructed from the set of

equalities will not contain Skolem functions. In this

way we implement elimination of Skolem functions

during analysis.

For the rule obtained in the previous section, during

semantic analysis we establish that the extended view

v_SDSS_OData implies equalities between variables

bound to #x.magnitude and variable bound to

magnitude, and, therefore, these equalities can be

removed and the attribute magnitude is used instead of

#x.magnitude in the rule:

r (_/R[ra, de, name, name1, ra1, de1])

:- v_RC_RData(_/CT_RData[name, ra: coord_ra,

de: coord_de]) & v_SDSS_OData(

_/CT_OData[magnitude, name1: name, ra1:

coord_ra, de1: coord_de])

& ocdColorIndexURG(magnitude, ci)

& ocdDeltaColorIndexURG(magnitude, dci)

& xmatch(ra, de, ra1, de1, 45, 45)

& ra >= 120.0 & ra <= 255.0

& de >= 4.39 & de <= 5.61 & ci > dci

Along with Skolem functions elimination, we test

Body predicate IR Transformed body of the IR
radioCatalogData(y/RadioCatalogData[name, ra:

coord.ra, de: coord.de])
IR1

v_RC_RData(_/CT_RData[y:#x, name, ra: coord_ra,

coord_raError, de: coord_de])

opticalCatalogData(x/ OpticalCatalogData[name1,

ra1: coord.ra, de1: coord.de])
IR2

v_SDSS_OData(_/CT_OData[x:#x, name1: name, ra1:

coord_ra, de1: coord_de])

colorIndexURG(x, ci) IR3 ocdColorIndexURG(x.magnitude, ci)

deltaColorIndexURG(x, dci) IR4 ocdDeltaColorIndexURG(x.magnitude, dci)

matchCatalog(ra, de, ra1, de1, 45, 45) IR5 xmatch(ra, de, ra1, de1, 45, 45)

Table 1 Rewriting of body predicates

satisfiability of the rule. Additionally, we collect all

arithmetic predicates found in the constraints of a rule

and constraints of a view used in the rule. We operate in

terms of the obtained bindings, and, therefore, there are

only variables and constants in arithmetic predicates.

We consider arithmetic predicates <, ≤, ≥, > and

construct an inequality graph to test satisifiability [1].

Also we distinguish inequality graph constructed from

arithmetic predicates implied by views and use it to

remove arithmetic predicates with Skolem functions.

4.3 GAV unfolding

The first two phases produce a rewriting which can

refer to GAV views. To obtain this rewriting expressed

in terms of the source schema we perform GAV

unfolding. In our approach, it is safe to consider that

constructed (during the registration process) GAV

views do not share common functions and local classes.

In this case, we can perform GAV unfolding of every

GAV view found in the rule independently. To unfold a

GAV view for a body predicate we unify the head of

the GAV view with the body predicate. This unification

implies a respective transformation of the body of the

GAV view. Then we substitute the body predicate with

the transformed body of the GAV view. Function

predicates with resulting attributes, which are not

referred in the unified head of the GAV view, are

removed from the transformed body of the GAV view.

To distinguish attributes not included in the head of

GAV view and variables, which occur with the same

names in few GAV views, we add a unique suffix to all

variables and such attributes (in our example, we will

use the suffix “1” for v_RC_RData and the suffix “2”

for v_SDSS_OData).

To perform GAV unfolding in the rule obtained in the

previous section, we unify the head of GAV1

v_RC_RData(x/CT_RData[name, spIndex, coord,

coord_ra, coord_raError, coord_de,

coord_deError])

:- rcCatalog(x/RCCatalog[name, spIndex: Sp-

Index])

& calcRA2Deg(x, coord_ra)

& calcDE2Deg(x, coord_de)

& calcArcsec2Deg(x, coord_raError)

& calcArcsec2Deg(x, coord_deError)

& get_coord(x, coord)

with the body predicate of the rule

v_RC_RData(_/CT_RData[name, ra: coord_ra,

de: coord_de])

which is replaced with the following transformed body

of GAV1

rcCatalog(x1/RCCatalog[name])

& calcRA2Deg(x1, ra) & calcDE2Deg(x1, de)

In the same way we unfold v_SDSS_OData, replacing it

with the following transformed body of GAV2:

photoPrimary(x2/PhotoPrimary[name1: objID,

ra1: ra, de1: dec]) & get_magnitude(x2,

magnitude)

The result of GAV unfolding gives the following final

rewriting:

r (x/R[ra, de, name, name1, ra1, de1])

:-rcCatalog(x1/RCCatalog[name])

& calcRA2Deg(x1, ra) & calcDE2Deg(x1, de)

& photoPrimary(x2/PhotoPrimary[name1: objID,

ra1: ra, de1: dec])

& get_magnitude(x2, magnitude)

& ocdColorIndexURG(magnitude, ci)

& ocdDeltaColorIndexURG(magnitude, dci)

& xmatch(ra, de, ra1, de1, 45, 45)

& ra >= 120.0 & ra <= 255.0

& de >= 4.39 & de <= 5.61 & ci > dci

5 Related work

Mediation objectives. Distinguishing feature of the

mediation intention in our work comparing to usually

considered in the literature [10] is its usage for problem

solving over heterogeneous distributed information

sources [4,5,19,20] (integration of data sources is only

part of the issue). One of the consequencies of such

objective is that the mediator schema alongside with

data structure specifications includes specification of

functions (methods). Refining implementation of the

mediator functions are identified during registrtaion

among pre-existing sources (services).

Schema mapping and view definitions. Schema

mapping is one of the crucial issues for data integration.

Clio project [9] for data integration and data exchange

supports generation of correspondences between

schemas and mappings (queries) between schemas.

Given a pair of schemas, the correspondence engine

generates and manages a set of candidate

correspondences between the two schemas (purely

syntactic, based on matching of terms, field names,

etc.). The mapping engine supports creation, evolution

and maintenance of mappings between pairs of

schemas. A mapping is a set of queries from a source

schema to a target schema that will translate source data

into the form of the target schema. These tasks are

interactive, semi-automatic. Currently [9] relational and

hierarchical XML schemas are considered in Clio.

Another method, AutoMed [12], is a framework

supporting schema transformation for data integration

applying LAV, GAV, GLAV approaches. The

framework consists of a low-level hypergraph-based

data model and a set of primitive schema

transformations defined for this model. Higher level

data models and primitive schema transformations for

them are defined in terms of this lower-level common

data model. Pathway is a transformation composed of

primitive transformations. This syntactic technique is

semi-automatic, it can be specialized for various

structured data models.

The work presented in our paper takes completely

different, semantic information model transformation

approach. First, for information integration an

extensible canonical information model is introduced

(in particular, its kernel is a hybrid object-

oriented/frame-based information model [13]). For any

source model (defined by syntax and semantics of two

languages – information description language and

information manipulation language) a mapping into an

extension of the canonical model is defined. This

mapping is reversible [16,15] and is supported by the

respective compiler (that is used also in process of

wrapper generation). Term rewriting approach provided

by Meta Environment [3] is applied for compilers

generation. A relevance of any source schema to the

mediator is established ontologically [15,16]. A relevant

source schema expressed in some source model is

compiled into the canonical schema. The source schema

refines [16] the canonical model schema. The

refinement of the schema mapping is formally checked

[25]. Now, having schemas expressed in the same

notation (canonical model) a LAV/GLAV registration

of the source schema in the mediator schema is done

relying on the ontological relationships between types,

attributes, functions, classes and applying type calculus

[14] to form the LAV/GLAV mapping rules as defined

in section 3.4.

Query rewriting. The state of the art in the area of

answering queries using views ranging from theoretical

foundations to algorithm design and implementation has

been surveyed in [10]. Additional evaluations of the

query rewriting algorithms can be found in other papers

[8,27]. Inverse rules algorithms are recognized due to

their conceptual simplicity, modularity and ability to

produce the maximally-contained rewriting in time that

is polynomial in the size of the query and the views.

Rewriting unions of general conjunctive queries using

views [27] compares favorably with existing

algorithms, it generalizes the MiniCon [23] and Ujoin

[24] algorithms and is more efficient than the Bucket

algorithm. Finding contained rewritings of union

queries using general conjunctive queries (when the

query and the view constraints both may have built-in

predicates) are important properties of the algorithm

[27]. No concern of object query semantics in typed

environment has been reported. Main contribution of

our work is providing an extension of the query

rewriting approach using views for the typed subject

mediation environment. In contrast with [27], in [17]

we showed how to extend conjunctive queries with

object SPJ semantics based on type refinement

relationship and type calculus. Our LAV-based

approach [17] shows that refinement of the mediator

class instance types by the source class instance types is

the basic relationship required for establishing query

containment in the object environment. In current

paper, preserving the typed environment, we show

specifically how LAV/GLAV technique is used to

implement the source/mediator schema conflict

resolving functions. The heads of the LAV view

definition rules may contain any source schema query

resolving conflict through a concretizing view

expressed as a GAV rule over respective source. To

finalize a rewriting, this source view is to be unfolded

according to the GAV approach (section 4).

6 Conclusion

To operate huge, diverse and distributed data volume, to

organize efficient problem solving over it, the

collaborative scientific enterprises (like VO in

astronomy) now are created. New approaches to

problem solving organization over multiple distributed

collections of data sources and services are required.

We distinguish between two principally different such

approaches: 1) moving from sources to problems and 2)

moving from a problem to the sources. We emphasize

here the second approach (problem-driven) that

supports an interaction between an application and

sources on the basis of the application domain

definition (description of the mediator). Description of

the mediator does not depend on the relevant sources

the set of which might be changed arbitrarily during life

time of the mediator.

In this paper we focus on results of research and

experimental work oriented on problem-driven subject

mediation emphasizing aspects of LAV/GLAV

information sources integration in the mediator. The

approach considered has the following distinguishing

features: typed, object canonical model kernel is used; a

technique of refining mapping of source information

models into extensible canonical one is provided;

registration in a mediator of the relevant source is done

so that an ontologically relevant mediator type should

be provably refined by a source type or by a

composition of such types (the conflict resolving

functions are to be specified, if required); rewriting of

non-recursive logical programs containing strongly

typed rules is applied. Using astronomical example

taken from the Russian VO context, we have shown the

techniques of information source registration at the

mediator and query rewriting in a typed mediation

environment applying LAV/GLAV approach.

We clearly show that usage of mediation technique for

problem solving over heterogeneous distributed

information sources requires application of typed

(object) canonical model and an ability to semantically

identify refining implementation of the mediator during

registration of relevant sources (services). We have

developed an approach for mapping source information

models into extensible canonical model based on

refinement check of the schema mapping [16]. This

approach has been checked over various kinds of

information models [16,18,26]. Obtaining schemas

expressed in the same notation, we show in this paper

how LAV/GLAV registration of the source schema in

the mediator schema is done relying on the ontological

relationships between types, attributes, functions,

classes and applying type calculus [14] to form the

LAV/GLAV mapping rules as defined in 3.4.

Regarding query rewriting, main contribution of our

work is applying rewriting to the typed subject

mediation environment. Our LAV-based approach [17]

shows that refinement of the mediator class instance

types by the source class instance types is the basic

relationship required for establishing query containment

in the object environment. In the current paper,

preserving the typed environment, we show how

LAV/GLAV technique is used to implement the

source/mediator schema conflict resolving functions.

For practical purposes the implemented mediation

approach is planned to be used in a synergy with the

AstroGrid VO infrastructure [2].

Acknowledgements. Authors are grateful to Olga

Zhelenkova (Special Astrophysical Observatory of

RAS) for formulation of the distant galaxies discovery

problem and for participation in the mediator schema

consolidation.

References

1. Afrati, F., Li, C., and Mitra, P. Rewriting queries using

views in the presence of arithmetic comparisons. Theor.

Comput. Sci. 368, 1-2 (Dec. 2006), p. 88-123

2. AstroGrid Release 2007.1. http://software.astrogrid.org/

3. M.G. Van Dn Brand, J.Heering, P.Klint, P.A.Oliver.

Compiling Language Definitions: the ASF + SDF

Compiler. ACM TOPLAS, Vol. 24, N 4, July 2002

4. Briukhov D.O., Kalinichenko L.A., Zakharov V.N., et al

Information Infrastructure of the Russian Virtual

Observatory (RVO). Second Edition. IPI RAN, 2005, 173

p.

5. D.Briukhov, L.Kalinichenko, V.Zakharov. Diversity of

domain descriptions in natural science: virtual observatory

as a case study. Proceedings of the 7
th

Russian Conference

on Digital Libraries RCDL2005, Yaroslavl, October 2005,

p. 23 – 30

6. D.O. Briukhov, L.A. Kalinichenko, N.A. Skvortsov.

Information sources registration at a subject mediator as

compositional development. In Proc. of the East European

Conference on "Advances in Databases and Information

Systems", Lithuania, Vilnius, Springer, LNCS No. 2151,

2001

7. Marc Friedman, Alon Levy, and Todd Millstein.

Navigational Plans for Data Integration. In Proceedings of

the National Conference on Artificial Intelligence (AAAI),

1999

8. J. Grant, J. Minker. A logic-based approach to data

integration. Theory and Practice of Logic Programming,

Vol 2(3), May 2002, 293-321

9. Laura M. Haas, et al Clio Grows Up: From Research

Prototype to Industrial Tool. Proc. of the ACM SIGMOD

Conference, June 14-16, 2005, Baltimore, Maryland,

USA.

10. Alon Y. Halevy. Answering Queries Using Views: A

Survey. VLDB Journal, 10(4), 2001.

11. Robert Hanisch, Peter Quinn. The International Virtual

Observatory. http://www.ivoa.net/pub/info/

12.Edgar Jasper, Nerissa Tong, Peter Mc.Brien, Alexandra

Poulovassilis. Generating and Optimising Views from

Both as View Data Integration Rules. Proc. 6th Baltic

Conference on Database and Information Systems

(DBIS'04), Riga, June 2004

13. L. A. Kalinichenko. SYNTHESIS: the language for

description, design and programming of the heterogeneous

interoperable information resource environment. Institute

of Informatics Problems, Russian Academy of Sciences,

Moscow, 1995

14. Kalinichenko L.A. Compositional Specification Calculus

for Information Systems Development. Proc. of the

Conference on Advances in Databases and Information

Systems (ADBIS'99), Maribor, Slovenia, September 1999,

Springer Verlag, LNCS

15. L.A. Kalinichenko, N.A. Skvortsov. Extensible

Ontological Modeling Framework for Subject Mediation .

Proceedings of the Fourth All-Russian Conference on

Digital Libraries, RCDL’2002, Dubna, October 15 – 17,

2002

16. L.A.Kalinichenko. Canonical model development

techniques aimed at semantic interoperability in the

heterogeneous world of information modeling.

Proceedings of the Open INTEROP Workshop “Enterprise

modeling and ontologies for interoperability” at the 16th

Conference on Advanced Information Systems

Engineering (CAiSE). Riga, Latvia, 7-11 June, 2004, p.

101 – 116

17. Kalinichenko L.A., Martynov D.O., Stupnikov S.A. Query

rewriting using views in a typed mediator environment.

Proceedings of the East-European Conference on

“Advances in Databases and Information Systems"

(ADBIS'04), Hungary, Budapest, Springer, Lecture notes

in Computer Science, Vol. 3255, September 2004

18. L.Kalinichenko, S.Stupnikov, N.Zemtsov. Extensible

Canonical Process Model Synthesis Applying Formal

Interpretation. Proceedings of the 9th East European

Conference Advances in Databases and Information

Systems, ADBIS-2005, Tallinn, September 2005, p. 183 -

198

19. L. Kalinichenko, S. Stupnikov, et al. Russian Virtual

Observatory Community Centre for Scientific Problems

Solving over Multiple Distributed Information Sources.

Proc. of the 8
th

Russian Conference on Digital Libraries

RCDL2006, Suzdal, Russia, 2006, p. 120 – 129

20. Leonid Kalinichenko. Subject mediation approach for

scientific problem solving in Virtual Observatories.

XXVIth General Assembly of the International

Astronomical Union, Prague, August 14 – 25 2006, p. 454-

455

21. Maurizio Lenzerini. Data Integration: A Theoretical

Perspective. In Proceedings of the ACM Symposium on

Principles of Database Systems (PODS), 2002.

22. R. Nieuwenhuis and A. Oliveras. Congruence closure with

integer offsets. Proceedings of the 10th Int. Conf. Logic for

Programming, Artif. Intell. and Reasoning (LPAR).

LNAI, vol. 2850, 2003, p. 78--90

23. R.Pottinger, A.Levy. A scalable algorithm for answering

queries using views. In Proc. Of the Int. Conf. on Very

Large Data Bases (VLDB), Cairo, Egypt, 2000

24. X. Qian. Query folding. In Proc. of Int. Conf. on Data

Engineering (ICDE), p.p. 48 – 55, New Orleans, LA, 1996

25. Stupnikov S.A. Mapping of canonical model core

specifications in Abstract Machine Notation. In paper

collection “Formal methods and models in compositional

infrastructures of distributed information systems”, IPI

RAS, Moscow, 2005, p. 64 – 88 (in Russain)

26. Stupnikov S.A., Kalinichenko L.A., Bressan S. Interactive

discovery and composition of complex Web services. In

Proceedings of the East-European Conference on

“Advances in Databases and Information Systems"

(ADBIS'06), Springer, 2006, p. 216 – 231

27. J. Wang, M.Maher, R. Topor. Rewriting Unions of

General Conjunctive Queries Using Views. In Proc. of the

8th International Conference on Extending Database

Technology, EDBT’02, Prague, Czech Republic, March

2002

i This research has been partially supported by the RFBR

grants 06-07-08072 and 06-07-89188 and RAS project 1-10 of

the program on “Fundamentals of IT and systems”

