
Exceptions in Information Systems

© Alfs Berztiss Bernhard Thalheim

Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260, USA

Computer Science Institute, University of Kiel,
Olshausenstrasse 40, 24098 Kiel, Germany

thalheim@is.informatik.uni-kiel.de

Abstract

The concept of exception has been defined in
diverse ways. We relate exceptions to
computational transactions and to control
constructs. Our view of a transaction is very
broad, and we consider transactional
exceptions to be instances of undefined
function values. By giving different
interpretations to “undefined” we arrive at a
classification of transactional exceptions. Our
primary interest is in information systems, i.e.,
in database transactions, and in processes that
consist of such transactions. In the database
context we show that liberal treatment of
exceptions is simpler than total quality
management for consistency based on a set of
constraints. We refer to control operations that
link transactions into processes as actions.
Actions tend to be time-related, and time Petri
nets provide actions with semantics. The time
Petri net representation indicates where
exceptions can arise. We also consider high-
level monitors for the detection of exceptions.
Although our emphasis is on detection of
exceptions, their handling is also discussed.

1 Introduction

An exception is some kind of deviation from the norm,
and exceptions have been studied in the contexts of
programming languages, information systems, and
artificial intelligence. As can be expected, they have
been defined differently in these areas. Despite their
importance, generally they have not been given the
attention they deserve. For example, in the 1719-page
2-volume Handbook of Software Engineering and
Knowledge Engineering exceptions receive a very brief
mention in just two places: p.126 of [1], and p.742 of
[2].

We begin by stating a few definitions from the literature
to show the variability between them:

1. An exception is an event occurring during
execution of a program that makes
continuation impossible or undesirable [3].

2. Exceptions are features that were added to
programming languages to provide the
programmer the capability to specify what
would happen when unusual execution
conditions occur, albeit infrequently [4].

3. An exception is inconsistency with the
program specification [5].

4. We start by associating the occurrence of an
exception with the violation of a constraint [6].

5. An exception is an unusual event, erroneous or
not, that is detectable either by hardware or
software and that may require special
processing [7].

6. Exceptions are deviations from the ideal
sequence of events [8].

From this list we can abstract out three general themes.
First, the classical programming language approach
(items 1 and 2): an exception handler aborts the
program, or the program continues from the point of
detection of the exception after a corrective action has
been taken. Second, a violation of the software
requirements is detected (items 3 and 4). Third, an
exception is a deviation from normality (items 5 and 6).
This may be an event or condition that prevents or
delays the achievement of a goal that the user wishes to
achieve. The goal-relatedness is not an essential
characteristic of an exception, but an exception is
required to be a relatively rare occurrence.

Another way of classifying exceptions is by their
causes. Here four types can be distinguished. The first
type is an error, which may relate to design, operation,
or organization. A failure that results as a consequence
of an error can be regarded as an exception, but it is
preferable to consider it as a problem of quality
management rather than of exception management. The
second type is operational nondeterminism. In a lengthy
numerical computation we cannot predict in advance if
and when floating point underflow will occur, and, if it
does occur, whether it will lead to division by zero.
Even if a computation that is subject to operational
nondeterminism is not terminated by an exception
handler, the result of such a computation is unreliable.
The best that an exception handler can then do is to give
a warning to this effect. The third type is
incompleteness. A software system operates in an
environment (or context), which, following McCarthy
[9], we denote by (w,t), where w is a slice of the world
at time t. Unfortunately it is rarely possible to determine
in advance all the components of w that are relevant,
and how the relevant components are expected to

Proceedings of the 9th Russian Conference on Digital
Libraries RCDL’2007, Pereslavl, Russia, 2007

evolve over time. It is impossible to determine in
advance the effect of these components on a
computation, which means that exceptions due to
incompleteness require human intervention. The fourth
type corresponds to the third theme listed above,
namely deviation from normality.

Our purpose is threefold. First, in Section 2, we
introduce a uniform definition of exceptions that
encompasses all the classes introduced above. In this
we distinguish between exceptions that relate to data
and those that relate to control. Second, we put
emphasis on exceptions that have received relatively
little attention in the past. These are exceptions that
arise in databases or in processes consisting of database
transactions. They are discussed in Sections 3 and 4,
respectively. Section 5 introduces a monitoring
approach to the detection of unforeseen exceptional
conditions. Section 6 deals with the design of exception
handlers. Section 7 is a summary of our work and a
look to the future.

2 Transactions and exceptions

2.1 Classification of transactional exceptions

One way of interpreting a computational process is to
consider it as a sequence of transactions, which may be
combined by control operations. We view a transaction
as the evaluation of a function f for an argument or
input x, where x and f(x) can be single values or data
aggregates of arbitrary complexity. The transactional
view is natural for database operations, but it can be
applied to any kind of computation. Thus x := a is a
transaction where “:=” represents the assignment
function, a is its argument, and x is the value obtained.
If we regard the data workspace of the program as a
rudimentary kind of database, this differs little from a
conventional database update. Transactions can be
combined into composite transactions, i.e., transactions
exist at different levels of granularity. For example, a
program that generates the inverse of a matrix is a
transaction made up of numerous primitive transactions.

This transactional–functional view is somewhat
artificial, but it allows us to define in a uniform way all
exceptions except those relating to control. It also leads
to a classification. An exception arises when f is
undefined for a particular argument x. This definition is
very general, but different interpretations of
“undefined” lead to different classes of exceptions.

(a) Formal undefinedness. Examples of this are division
by zero, and square root of a negative number. The
division function is undefined for a single value in its
domain, the square root function for half the real
numbers. The square root example shows that
exceptions can relate to large subsets of possible
arguments.

(b) Processor-related problems. Here the well-known
examples are numerical overflow and floating point
underflow. An arithmetic operation becomes undefined

when the expected result is outside a processor-specific
numerical range.

(c) Inapplicable attributes. This class if exceptions has
been studied in the artificial intelligence context: “birds
fly” does not apply to all birds. Here undefinedness
relates to functions that have to do with flying, for,
example, the top flying speed for a class of birds. Of
course, the top speed can be set to zero for penguins,
but a weight-to-speed ration for penguins is formally
undefined.

(d) Null values. An inapplicable attribute is a type of
null value, and null values can be represented in a
database by special markers standing for inapplicable
(as in our Class c), or knowable but not known (name of
spouse of a married person), or unknowable (the names
of all residents of a particular house in Pompeii in the
morning of August 24, A.D. 79).

(e) Database constraint violation. Suppose that the total
salary budget of a company is S. A salary increase is
“undefined” if it were to result in salary expense in
excess of S. Database constraints often act as filters. For
example, if a transaction is to be applicable only to
people at least 65 years old, then it is undefined for
younger people, and applicability is defined by means
of a constraint. This class of exceptions will be looked
at in some detail in Section 3.

2.2 Transaction systems

We sketch a model of transactional computation in
which a process is defined by a set of transactions and a
set of actions that link the transactions into a process.
Exceptions relate to both transactions and actions.
Formally, a transaction system is the tuple < T,A,S,F >,
where

 T is a set of transactions,
 A is a set of actions,
 S is a set of signals,
 F is a flow relation: F (⊂ T × A) (∪ A × T).

In a conventional program the flow relation is implicit:
unless otherwise indicated, statements are executed in
the sequence they have in the program.

The separation of process aspects from operations on
data allows these components to be designed more or
less independently of each other. Communication is by
means of signals. Transactions send out signals, and
signals are picked up by actions.

2.3 Control and exceptions

One characteristic of transaction systems is that they
often exhibit a time dependence. The dependence can
be of two kinds. One relates to data that can undergo
dynamic change over time. This is a database
management concern. The other relates to process
control. Time-related exceptions include a deadline not
being met by a single process, a transaction not taking
place in a specified time window, and a rendezvous not
achieved by several processes within a specified time

window. The deadline problem is also known as a
timeout situation. For example, a telephone user has to
complete dialing within a specified time interval.

An example of the time window problem arises with
shunting of packages. As a package passes a bar code
reader, its destination gate is determined, and the time
of travel to the gate estimated — if the gate is opened
too early, some other packages will enter the gate
wrongly; if too late, the package has moved past the
gate. In the rendezvous problem, suppose the first
process arrives at time T. We require the other processes
to arrive in the time interval (T,T + t), where t is
specified in the system requirements.

Another type of time dependence is temporary
exception: a transaction is to be part of a process, or,
alternatively, is to be bypassed, during a given time
period. For example, Pennsylvania sales tax is in
general applied to computers, but there have been
periods of time in which they have been exempt from
the tax. During this time the transaction that deals with
the sales tax in not to be invoked.

A temporary exception defines two processes. In our
example the processes are sale with and sale without
sales tax. In other words, there is branching. In a more
general sense we consider a process that consists of a
normal sequence or network of transactions, and of
exceptions. An example of a normal sequence is a
process that supplies a customer with money from a
banking machine. Exceptional situations arise with the
use of a bank card that has been reported lost,
withdrawal limits exceeded, machine out of cash, etc. In
each instance there is branching. However, for this to be
an exceptional situation, one of the branches is to be
taken rarely. It is matter of subjective judgement
whether or not a branching event is an exception. For
example, the Pennsylvania sales tax exemption applies
to all purchases of computers over a given time period.
In this sense it is not a rare occurrence. On the other
hand, the sales volume of computers, to which alone the
temporary exemption applies, is small compared to the
sales volume of items subject to sales tax.

Our coordination component is a collection of actions.
Actions are started by signals received from
transactions or sensors, or by clocks, or by people, or by
some combination of the above, and they invoke
transactions. We shall represent transaction systems by
time Petri nets (for examples see [10], for a theoretical
survey see [11]). Intuitively we expect a one-to-one
correspondence between transactions and places, and
between actions and transitions. This works for
transactions, but not for actions. Because of the
complexity of today’s systems, arbitrary complexity
must be allowed for in the specification of actions,
although in most applications very little of this power is
needed. An action is thus represented not by a single
transition, but by a Petri net that can reach considerable
complexity. Such a representation of actions is
discussed in detail in Section 4.

3 Exceptions and databases

3.1 Occurrence of exceptions

Database systems are designed to be robust against
errors. Error-handling facilities such as

• a transaction manager for management of
concurrent access and computation on the
database,

• a recovery manager for treatment of system,
hardware, and software faults,

• an authorization and security manager for
detection of intruders and security violation,
and

• an exception programming environment for
explicit specification of exceptions

are integrated into the system. Nevertheless, a number
of other exceptions force the database developer and the
database programmer to explicit treatment of deviations
from the “normal” state.

Exceptions may occur due to

• modeling incompleteness caused by
incomplete knowledge of the application
domain and insufficient coverage of the
concepts represented in the schema,

• insufficient implementation support for the
database lifecycle, restrictions of modeling and
programming languages, lack of attention by a
modeler, and [12] a local instead of a global
view of database constraints,

• pragmatic assumptions made during the
database life cycle, hidden assumptions
regarding what is the normal case in an
application, overlooked cases, or a restricted
scope of users,

• distributed computing of transactions under
different commit protocols such as 2PC
(problems of coordination, timeout of
connections),

• internal organizational or computational
restrictions of the database management
system such as buffer management, memory
restrictions, time restrictions etc.

It is usually assumed that a run of a database system
fulfills the atomicity property, i.e. a transaction is either
entirely successful and thus leads to a state change or is
not having any effect on the data. Exceptions may,
however, lead to unexpected behavior. Since each
concept used in the database schema may have its own
exceptional cases, the representation of all possible
exceptions can lead to combinatorial explosion and to
severe management problems. Thus, we need a
mechanism that allows an “orthogonal” management of
exceptions in the sense that each type has its own set of
exceptions and an exception handler is called whenever
an exception occurs. Such orthogonalization of
exceptions is based on the introduction of general
exception types. These general exception types may be
instantiated by the exception handler in a restricted part

of the database. The instantiated exception programs
may then handle the exceptions.

3.2 Specification of integrity constraints

We give particular attention to the development of
general exception rules that are to support integrity
constraints and show how integrity constraint
enforcement is to be integrated with exception handling.
As summarized in [13], the variety of static and
dynamic integrity constraints is very large. Classically,
database integrity constraints are specified as logical
formulas. The logical framework provides a simple and
powerful mechanism for treating the implication
problem, for handling constraint sets, and for
associating constraints with the database structures. But
the framework neglects global effects. Also, if all
possible exceptional cases are considered, the result in
an overspecification. On the other hand, if only the
“normal” case is considered, the result is
underspecification. Moreover, normalization may
introduce rigid constraint enforcement and thus leads to
additional exceptions.

Database management systems do not support integrity
constraints in full, restricting support for the most part
to simple constraints such as primary key constraints,
key dependencies, domain constraints, and referential
inclusion dependencies. Functional or multivalued
dependencies are not supported. Normalization of
structures has been developed for treatment of
functional or multivalued dependencies. SQL-99
provides more powerful database structuring
mechanisms, but the treatment of constraints within this
structuring framework has been an open problem [14].

The enforcement of integrity constraints is thus left to
assertions, triggers, of stored procedures. Constraint
enforcement thus becomes a difficult task. Trigger sets
may lead to trigger avalanches or to non-intended
effects. For instance, an insertion of a tuple may lead to
deletion of all values of the tuple from the database.
This behavior is based on the presence of critical paths.
In [15] a sufficient and necessary condition for the
existence of critical paths has been given. Effect
preservation is far more difficult. It has been tackled in
[16–19]. We list now a number of aspects of the
constraint satisfaction problem that suggest why the
treatment of constraints via exceptions can be very
useful.

Rigidity of validity:
Some integrity constraints are very important in
an application area. Others are less important.
Users can often “live” with temporary violations
of the latter. Soft constraints [20] are constraints
whose satisfaction is desirable, but not essential.

Behavior in presence of null values:
Null values carry a variety of different
semantics. Most constraints are not defined on
null values. The behavior of some types of
constraints such as functional dependencies
becomes cumbersome if null values are
permitted [21].

Exceptions of validity:
In the daily operation of a database exceptions
may arise due to various reasons. In some cases
a constraint may be allowed to be invalid within
a time interval. A validity exception may thus
violate transaction semantics.

Enforcement time:
Validity of constraints may be enforced at
different points of time. This situation has been
taken into account to some extent. For instance,
SQL-99, allows one to specify that constraints
are to be enforced whenever a tuple that might
violate the constraint is modified, or at the end of
the transaction, or based on the occurrence of
some events. But the consistent management of
constraint enforcement time is still an open
problem.

Partial satisfaction of constraints:
Constraints may be partially or totally satisfied
[22]. We may collect all those tuples for which a
constraint is not satisfied into a separate database
unit.

Execution time deadlines:
Constraints may be violated due to the late
arrival of data or events. A contingency plan or
contingency transactions may be invoked with
guaranteed execution time characteristics.

Classically, integrity constraints are locally specified on
the conceptual level without consideration of their
enforcement and their scope within the schema.
Constraint enforcement is added during the
implementation phase. The environment of a constraint
is formed by the associated types and by the effect of
enforcement policies on other types and their
constraints. SQL:1999 supports a number of strategies:

Direct enforcement
can be automatically generated for declarative
constraints on the basis of policy enhancements,
such as RESTRICT, NO ACTION, CASCADE,
SET VALUE (null, default),
[INITIALLY] IMMEDIATE [DEFERABLE].

Transactions
provide three mechanisms for dealing with
failure:
(1) rollback whenever an inconsistency is
detected at the end of the transaction;
(2) advanced transaction models that erase the
effects of a transaction by explicit specification
of compensating transactions;
(3) DBMS support in the raising of an exception.

Triggers
are procedures that may be automatically
activated whenever an event occurs and a
condition becomes valid. We may distinguish
between integrity enforcement that depends on
after-before activation time, on row-statement
granularity, and on the possibility to use 1-n, n-1,
or n-n event-trigger pairs.

The specification of integrity constraints should include
their environment and the constraint enforcement policy.

Policies have been introduced in [17]; the environment
has been discussed in [20]. Constraints are expressed as
logical formulas. They can be restricted to a limited part
of the database, called a unit. They can be partially
violated. Exceptions for a constraint may be defined
explicitly. The enforcement policy is specified by an
enforcement rule with some kind of contingency
framework. These principles are embedded in the
following schematic logical formula or frame, which
supports all the database exceptions discussed above:

 3.3 Examples of database exceptions

For our example we take a small database in which are
stored data on persons, on cars, and certain associations,
e.g., that a car is owned by a person, where we let

“own” to mean that the car has been purchased or is
leased. Once a car is owned by somebody, insurance
coverage must be obtained. A number of “exceptional”
states may arise, brought about, for example, by the
short interval within which insurance coverage has to be
obtained or payments made to a dealer. In addition, cars
may be returned to dealers, or may be scrapped. We

could model all these specific cases by separate types,
could use very general constraints to cover all
exceptional cases, or use constraints that change
dynamically depending on the state of objects. Such
solutions lead to complex schemata that are difficult to
understand, are not extensible, and have infeasible
constraint maintenance. A better approach is to consider
schemata with explicit specification of exceptions. We
base our example in which this is done on the Entity-
Relationship schema of Fig.1, which is expressed in the
HERM notation (see [20]).

Whenever car data are inserted into the small database,

the corresponding person data must already exist or
must be inserted too. We may specify this constraint as
follows:

The constraint can be equivalently expressed by the
inclusion constraint
Car ⊆ Owned_By[Car].
We may, however, envision that a very small portion of
cars stored in our database have no owners. An example
is a car still waiting for a customer at a dealership. The
constraint may be expressed as follows:

Integrity Constraint
 [Localization: < unit_name >]
 [Partiality: < validity condition >]
 [Exception: < exception condition >]
 [In-Context: < enforcement rule, time, granularity >]
 [Out-Context: < conditional operation, accept_on >]
All components of this frame are optional.

Car_Must_Be_Owned_By_Person card(Owned_By, Car) = (1,n)
Localization: registration_department

Car_Must_Be_Owned_By_Person card(Owned_By, Car) = (1,n)
Localization: registration_department
Partiality: if Car ⊆ Cars_With_Dealer ...
Exception: Unknown_Ownership

Fig.1. HERM diagram of the car ownership schema.

The constraint can be equivalently expressed by the
inclusion constraint
Car \ with_Dealer[Car] ⊆θ Owned_By[Car].

We use the threshold value θ for expressing the size of
the set of cars to which the exception may be applied.

The exception can be specialized as a set of policies:
However, the specification as a set of policies tends to
be error-prone and cumbersome, which further
strengthens our view that constraint violation is best
dealt with as exception management.

Furthermore, we may state that the beginning of an
ownership of a car identifies the owner. This constraint
is expressible by a functional dependency:

Owned_By : { Car, From } → Owned_By .

This constraint may be interrelated to the previous
constraint:

Functional dependencies are total constraints. We may
also consider functional dependencies with null values.
But this treatment also becomes very complex.

The example shows that explicit treatment of all
exceptions may become a nightmare. Moreover,
consistency of constraint enforcement policies is not
axiomatizable and is not decidable [14]. Therefore, we
must either restrict constraint enforcement to the
“good” cases or leave constraint enforcement to the
DBMS and the programmer. The total specification of
all possible cases is already infeasible on the local level
since the policy for an n-ary relationship type is

specified by 3n+1 sub-policies. The deferred mode must

be embedded into transaction management. We also
may enforce integrity constraints at the row level or at
the statement level. The combination of policies will
lead to a global integrity constraint [13] if it can be

derived and computed. If we consider real life
applications with a typical size of hundreds if not
thousands of types, then treatment on the basis of
policies becomes entirely infeasible. In this case the
‘best’ option is the pessimistic treatment of consistency,
i.e., to entirely forbid any violation of consistency.

One goal of this paper is to show that we may weaken
consistency enforcement by liberal constraint
enforcement through acceptance of exceptions. This
liberal treatment seems to be appropriate as long as we
can specify a strategy that does not lead to an
overwhelming volume of exceptions.

4 Exceptions and processes

4.1 Representation of actions

As noted earlier we view a computational process as
composed of transactions and actions. Our experience
has shown that textual representation of a complex
action is easier to understand than the corresponding
Petri net, but text is often ambiguous, and, as we
discuss in detail in [24], this is the case with the
specification language looked at here. Components of
the language are therefore provided with standard
interpretation in terms of time Petri nets. An example of
an action:

Car_Must_Be_Owned_By_Person card(Owned_By, Car) = (1,n)
Localization: registration_department
Partiality: if Car ⊆ Cars_With_Dealer ...
Policy:

On INSERT(x) Into Car If x ⁄ owned_by[Car] Do INSERT Into owned_by Immediately
On DELETE(x) From Car Do DELETE (.x) From owned_by Immediately
On UPDATE(x) On Car Do Cascade UPDATE On owned_by Immediately
On INSERT(x) Into owned_by If x.Car ⁄ Car Do No_Action Deferred
On DELETE(x) From owned_by If card(σCar=x.Car(owned_by)) = 1 Do Restrict Immediately

On UPDATE(x) On owned_by Do No Action Immediately
On DELETE(x) From Person If x owned_by[Person] Do No Action Deferred
On UPDATE(x) On Person If x owned_by[Person] Do Cascade Deferred

Car_And_Date_Identify_Person Owned_By : { Car, From } → Owned_By
Localization: registration_department
Partiality: Unknown_Current_Ownership_Car_Again_With_Dealer
Exception: Unknown_From_Date

 ACTION Example;
 @(p) ON(SigA(a,b)) IN(0,q) EXCEPTION(ExA) ::
 DELAY(x,y) EXCEPTION(ExB):
 (TrA(a,b), TrB(b));
 ENDACTION

This action is initiated by a clock at time p. The action
continues if signal SigA arrives no earlier than p and no
later than p+q — this is what the IN component checks:
unless the arrival of the signal is within the time interval
(0,q) with respect to p, an exceptional condition arises,
and the action terminates by invoking exception handler
ExA. Otherwise, after a delay of between x and y time
units, where the exact length of the delay is selected by
an operator, transactions TrA and TrB are started.
However, if the operator has neglected to initiate these
transactions after y time units, exception handler ExB is
invoked. This example shows a process controlled by

both software and people. (In a simulation study the

length of the delay would be determined by a random
number generator.)

The syntax of the language for the specification of
actions consists of seven productions expressed in BNF:
Square brackets indicate that the item enclosed in the
brackets is optional. If square brackets are followed by
the symbol *, then the enclosed item may be present
zero or more times; if followed by +, then the item must
be present at least once. The symbol | indicates
alternation, e.g., A ::= B|C indicates that A may be
rewritten as B or as C. The example given above makes
the syntax largely self-explanatory.

The form of identifiers and expressions (ActionId,
TimeExp, SigId, Exp) is left undefined. The PrimAct

Fig.2. Components of actions

1. <Action>:: ACTION [<ActionId>];
 <Activator>:: [<ActPart>;]*
ENDACTION

2. <Activator>::= ON<Sig> | ON(<Sig> [,<Sig>]+)OFF <TPart> |
 @<TPart> [ON(<Sig>) [<EPart>] |
 ON(<Sig>)IN <TPart>]

3. <TPart>::= (<TimeExp> [,<TimeExp>]) [<EPart>]
4. <Sig>::= <SigId> [(<Exp> [,<Exp>]*)]
5. <EPart>::= EXCEPTION(<PrimAct>)
6. <ActPart>::= [<Delay>]

 [<PrimAct> | (<PrimAct> [,<PrimAct>]*)]+
7. <Delay>::= DELAY <TPart> [<EPart>]:

stands for a transaction, which may be an exception
handler, or the activation of a mechanical device, or a
message sent to a human operator.

The only component not used in the example is OFF. It
becomes necessary when several conjoined signals are
required, as in ON(SigA,SigB)OFF(15). This is a
synchronization mechanism: the action does not
advance until all the signals have been raised. But if a
signal does not get raised in the time period in which it
is expected to be raised, the system freezes. To avoid
this, the mandatory OFF is provided. After a time
interval s (here s = 15 time units), measured from when
the first signal in the set is raised, all signals are
switched off, and an exception handler is invoked. Here
as everywhere else, the exception handler may decide to
take corrective steps or to abort the action. Exceptions
may be handled by computer programs or by people.

We have modified time Petri nets by allowing clock
readings to specify the time an action is to be initiated.
In terms of the syntax, a TPart preceded by the symbol
@ represents clock readings; otherwise the TPart has its
conventional interpretation. Fig.2 provides a standard
interpretation of the components of an action. Every
action can be represented by a time Petri net composed
of the subnets of Fig.2. A broad arrow represents one or
ore arcs.

Case (i) corresponds to the first alternative of
Production 2 — a signal starts an action. In Case (ii)
several signals initiate an action, and this corresponds to
the second alternative of Production 2. Case (ii) is
complex, and its representation is merely schematic.
The form of the net depends on the number of signals
that are to be conjoined. In Fig.3 we show the detailed
net for two conjoined signals. In this net, place X is
initially to hold a token. Suppose that a signal is raised
first by the transaction represented by A. Then the
transition that leads to P fires, removing the token from
X, and we wait for the signal from B. If it arrives in
time, i.e., before s time units are up, the action
continues. If not, the exception transition fires. If the
signal from B arrives first, the situation is
symmetrically analogous.

In Case (iii) the action is initiated by a clock or a
person. If initiated by a clock, the setting would
normally be c = d, but in a simulation study a random
time within the interval (c,d) could be selected. If
initiated by a person, a time period defined by two
different clock readings would be usual. If the action
has not been started at time d, an exception arises.
Cases (iv) and (v) interpret the two optional
components that can follow a clock-based initiation. In
Case (iv) a signal has to be on at the time of initiation of
the action — this signal is issued by a transaction
represented by place B. If the signal is not on, we have
an exception. In Case (v) we also require a signal to be
on after the clock-based initiation, but not immediately.
Rather, it should come on at a time within (T + p,T + q),
where T is the time at which the action is initiated.
Exceptional situations arise if the signal is already on at
T + p, or has failed to come on by T + q. An example
arises with package routing by means of destination
gates. Suppose a bar code reader selects a gate for a
package. The bar code reader also initiates the action.
The gate should not open too early or too late. Here the
signal is issued by the gate-opening mechanism at the
time it opens the gate.

In the remaining case there is to be a delay of between a
and b time units, and, as we noted earlier, a manager
determines the precise length of the delay. An exception
arises if the manager fails to resume the action before
the delay time is exceeded.

Fig.4 shows the Petri net corresponding to our example
of an action. It is built up from the components of Fig.2
in a mechanical fashion. We leave it to the reader to
identify the places and transitions that correspond to
Cases (iii), (v), and (vi) of Fig.2. The author finds the
specification of the action as text easier to follow than
the net of Fig.4, but the net removes interpretation
ambiguity.

Fig.3. Conjunction of two signals

4.2 Example of a process

In Section 3 we looked at exceptions in the context of a
database relating to ownership of cars. Here the
example is extended into a process that a car undergoes
from its manufacture to its final disposal. Fig.5 shows
the process participants and lines linking them. Directed
lines represent transactions that transfer a car from one
participant to another, and we have attached a label to
each such line.

The initial transfer of the car is from factory to a
dealership (Label a). There the car can be sold or leased

(b and c, respectively). An owner may resell the car
privately to another entity of type “Owner” (d) or to a
dealership (e). The car may be repossessed by a
dealership if the car was bought on terms, and no
payments are made (f), and similarly for a leased car
(g). At the end of the lease period the car is to be
returned to the dealership, but under special
circumstances an earlier return may take place (Label
h). One cause for early return is damage to the car. If a
car is damaged beyond repair, the insurance company
takes over what is left of the car (Label i if the transfer
is from a dealership; Label j if from an owner), and
scraps the car (k). A car may also be scrapped by an
owner (m) or a dealership (n).

Some of the lines in Fig.5 do not represent single
transactions. For, example, under h, we have to
distinguish between normal and early return, and in the
latter case, between a total-loss collision, in which case
h is at once followed by i, and an early return arising
from lease cancellation by a lessee. Although
repossession is also an early return, a separate line (line
g) is necessary because this return is initiated by a
dealership.

Fig.5 represents a distributed process. The transactions
relate to different databases, maintained by dealerships
and insurance companies. An additional process
participant is the motorcar registration office with its
database. We do not show this participant explicitly
because it is not itself in possession of cars.

Now let us look at some exceptions that can arise. They
all involve a time constraint. A dealership arranges
temporal registration and insurance for a car when it
sells it, but the new owner has to arrange for permanent
insurance and permanent registration within a specified
time period. Similarly, in an owner-to-owner sale,
arrangements have to be made for insurance coverage
and registration transfer within a time limit. For
example, in

 ACTION Insurance;
 ON Sig(CarX) ::
 DELAY(0, Limit) EXCEPTION(HandlerA):
 Insure(CarX);
 ENDACTION

the exception handler HandlerA is invoked if the action
part that follows the DELAY has not been started Limit
time units after signal Sig has initiated the action.
Similarly, after a repossession, registration and
insurance have to be taken over by the dealership within
a specified time period.

Normally a leased car is to be returned at the end of the
lease period. Here two exceptional conditions can arise:
the car is returned before the end of this period, or it is
not returned at the end of this period. Both cases are
covered by

 ACTION LeaseReturn;
 ON Leased(CarY) ::
 DELAY(0, Leaseperiod) EXCEPTION(Late):
 Return(CarY);
 ENDACTION

Fig.4. The net of an action

Fig.5. The lifetime process of a car

If the car is returned before the end of the lease period,
then this is taken into account by the transaction Return,
which is invoked by an operator; if there has not been a
return at the end of the lease period, exception handler
Late is invoked. Note that early return may be due to an
accident. Action LeaseReturn raises questions. First, if
there is an early return, why not invoke Return directly,
instead of taking our roundabout approach? The reason
is that the action has to be terminated. Otherwise, after
the end of the normal lease period, although the car had
already been returned, exception Late will be wrongly
raised. Second, what if an exceptional situation arises
within the action itself? A lease may cover several
years. During this period the code of LeaseReturn may
get changed, or a move of the system to another
platform may cause the clock-based trigger that should
raise the exception to malfunction. This can be handled
by monitors, which we discuss in Section 5.

The main problem of exception management is the
determination of what to do when an exception has not
been anticipated in system design. In our example we
have not considered what happens when a car gets
stolen, or is confiscated because of its involvement in a
crime, or is impounded because of failure to pay
parking fees. In the latter two cases an authority may
sell the car. Here we are becoming aware of the
oversights still during the design phase, but it could
well happen that a system is made operational with
these flaws.

Let us now consider a situation in which a customer
requests from a dealership a car with a specific attribute
set Q. The request is forwarded to the factory, and
several possibilities can arise. First, the specified car is
available for immediate delivery. This is the normal
situation, covered by the transfer from factory to
dealership to owner shown in Fig.5 as lines a and b.
Second, the car can be made available, but after a delay.
Two exceptional situations can arise: (a) the customer
finds the delay unacceptable; (b) the factory may not be
able to supply the car within the initially suggested
delay period. Another type of exception arises when the
factory does not respond to the initial request within a
reasonable time period. Except when an order can be
filled at once, this special-order process is separate from
that of Fig.5 because the car being considered does not
yet exist.

4.3 Exception patterns

Both the example actions shown above have the same
pattern, which we express in terms of the irreducible
components of our grammar:

 ACTION <ActionId>;
 ON <Sig> ::
 DELAY(<TimeExp>, <TimeExp>)
 EXCEPTION(<PrimAct>):
 <PrimAct>;
 ENDACTION

Actually the pattern embodies Case (vi) of Fig.2. Cases
(ii), (iii), (iv), (v), and (vi) can be regarded as generic
exception patterns for processes. Fig.6 illustrates an

instance of Case (ii) of Fig.2. Transactions TraX and
TraY send out signals SigA and SigB. In addition, SigC
and SigD are sent out by some other transactions.
Action Act1 is to be initiated by a conjunction of signals
SigA, SigB, SigC, and Act2 by a conjunction of SigA,
SigB, SigD. Now, if Act1 picks up SigA and SigC, and
Act2 picks up SigB and SigD, both actions go into a
wait state — a deadlock situation has arisen in which
Act1 waits for the now unavailable SigB, and Act2
waits for SigA. Deadlock can be prevented by by a
mutual exclusion mechanism, but a simpler solution is
to invoke an exception handler that allows, say, both
actions to proceed even though each of them lacks one
of the required signals.

Thus there are essentially just five basic exception types
associated with actions. In addition there is the case in
which a signal fails to be issued over a suspiciously
long time period. This small number appears to be in
conflict with the 260 exception types collected by the
MIT Process Handbook Project [25], but we should
note that many of the latter are essentially design errors,
such as “ goals contain conflicts or inconsistencies,” or
“process contains design flaws” [8]. Our contribution
has been to show that there there is a very small number
of basic components of an action, and to make
exception detection a precisely defined part of these
components.

5 Monitor-based exception detection

In Case (i) of Fig.2 an action is to be initiated by a
signal. No link to an exception handler is provided
because the absence of a signal need not imply an
exceptional situation. However, if an action is to be
initiated by a signal, then we do expect this signal to be
raised eventually. A similar situation can arise with Case
(ii). Here an exception is detected when some signals do
not arrive in time, but no provision is made for a case in
which the system has to wait for the first of the signals
an inappropriately long time. We do not want to impose
time constraints on the signals, primarily because they
could differ for different instances of an application, but
we still need to make sure that the absence of signals is
not due to communication failure or some other
anomaly. The detection of anomalies can be handled by
monitors. Exception monitors serve several purposes.

Fig.6. A deadlock situation

First, they act as a safeguard in case exception detectors
and exception handlers are faulty. A problem with
handlers is that they may not be adequately tested. If
test case selection is based entirely on an operational
profile (on operational profiles see, for example, [26]),
then exception handlers, because they are rarely
invoked, may not get tested at all.

Second, monitors should be made responsible for
detecting and handling exceptional situations that have
not been handled in system requirements. In a
disciplined process for the development of information
systems, requirements should be a refinement of the
goals that an enterprise has set for the information
system. It has been suggested that an exception monitor
should be based on such goals [27]. However, if
monitors are to be goal-based, why not make the
requirements a complete refinement of the goals? This
shows that we are dealing with a difficult research
topic. We leave it for the future.

Third, monitors should be a safeguard against
communication breakdowns. In case a signal does not
initiate an action when expected, there can be multiple
causes that we examine in the next section. One such
cause is the failure of a communication link. A monitor
can survey the situation and establish an alternative
communication path.

6 Exception handlers

An exception detector merely established that an
exception has arisen, and invokes an exception handler.
A major aim of the developers of information systems is
to implement exception handlers as software. Here we
look in general terms at the structure of a software
exception handler.

The first step is to establish the precise cause for the
exception. This also applies to exception handling
carried out by humans. For example, if an expected
signal has not arrived from transaction X, there can be
the following causes:

• communication failure between X and the
action;

• transaction X was not initiated;
• transaction X has failed;
• a partial redesign of the process has resulted in

turning the action into dead code.

Next the selected cause has to be examined further. For
example, if transaction X was not initiated, then the
exception relates not to the action, but to transaction X.
The reason why X was not initiated could be that a
human operator was not available to initiate it, or that a
different transaction was initiated in error. The failure
may sometimes have to be traced back through a chain
of transactions and actions until the actual reason for
the exception has been established. Only then can
corrective action be undertaken. As part of this there
should be an estimate of the actual damage, monetary or
as reduced goodwill, that the exceptional situation has
caused.

7 Summary and a look to the future

We have considered exceptions in two contexts: as they
relate to database transactions, and as they can arise in
process execution. With regard to database transactions,
we demonstrated how different kinds of exceptions may
be used for handling violations of integrity constraints.
The exception handler calls a program that moves the
database into a state that is consistent with the
specification. A temporal violation of integrity
constraints is allowed as long as the exception handler
allows the transaction to reach a consistent state. With
regard to processes, we have made explicit the detection
of exceptional situations in our language of actions,
which in an earlier form was introduced in [24].

The very general definition of transactions in Section 2
suggests that the “action-language” of Section 4.1 can
be added as a coordination component to any modular
specification language that needs only to be extended to
allow for the sending out of signals, or that already
possesses such capability. The transformation of the
action specifications into executable code should not
present difficulties. For ease of implementation, signals
should then be directed to specific actions, which
implies that the naming of actions becomes mandatory.

In Section 4.3 we saw that actions follow general
patterns that are based on the components of actions of
Fig.2. This enables us to pinpoint precisely the point
from which a backward trace through the system is to
lead to the actual cause of the exception. Sometimes the
response to an exception has to take place so rapidly
that human response times are inadequate. The precise
localization of the manifestation of exceptions should
help toward the automation of exception handling.
Unfortunately this is not enough. We saw that although
the number of basic types of exceptions is small, there
can be a variety of causes for an instance of an
exception. Consequently, cause-effect relationships
have to be examined very thoroughly, and the cause-
effect analysis automated to the greatest extent possible.

In Section 5 a brief introduction was made to exception
detection my monitors. The design of monitors, or,
rather, the establishment of general principles to guide
their design, we consider a very important research
topic. If an exception manifests itself to the system
merely as a failure, then the search for its cause can be
laborious and difficult. Monitors can be designed in
such a way that they detect causes directly.

Bibliography

[1] Chang, S.-K. (Ed.), Handbook of Software
Engineering and Knowledge engineering, Volume
1. World Scientific, 2001.

[2] Chang, S.-K. (Ed.), Handbook of Software
Engineering and Knowledge engineering, Volume
2. World Scientific, 2002.

[3] Maxion, R.A., and Olszewski, R.T., Eliminating
exception handling errors with dependability cases:
a comparative, empirical study. IEEE Trans.
Software Eng. 26 (2000) 888–906.

[4] Ryder, B.G., and Soffa, M.L., Influences on the
design of exception handling. Software Engineering
Notes, Vol.28, No.4 (July, 2003) 29–35.

[5] Romanovsky, A., Xu, J., and Randell, B., Exception
handling and resolution in distributed object-
oriented systems. In Proc. 16th IEEE Internat.
Conf. on Distributed Object-Oriented Systems,
IEEE CS Press 1996, 545–552.

[6] Murata, T., and Borgida, A., Handling of
irregularities in human centered systems: a unified
framework for data and processes. IEEE Trans.
Software Eng. 26 (2000) 959–977.

[7] Hagen, C., and Alonso, G., Exception handling in
workflow management systems. IEEE Trans.
Software Eng. 26 (2000) 943–958.

[8] Dellarocas, C., and Klein, M., A knowledge-based
approach for handling exceptions in business
processes. Information Technology and
Management 1 (2000) 155–169.

[9] McCarthy, J., Notes on formalizing context. In Proc.
13th Internat. Joint Conf. Artificial Intelligence,
1993, 555–560.

[10] Berztiss, A.T., Petri nets. To appear in Handbook of
Software Engineering and Knowledge engineering,
Volume 3. World Scientific.

[11] Berthomieu, B., and Diaz, M., Modeling and
verification of time dependent systems using time
Petri nets. IEEE Trans. Software Eng. 17 (1991)
259–273.

[12] Berztiss, A.T., Should integrity constraints be
global or local? Sixth Internat. Workshop on
Foundations of Models and Languages for Data and
Objects, Schloss Dagstuhl, Germany, 1996.

[13] Thalheim, B., Dependencies in Relational
Databases. Teubner Verlag, 1991.

[14] Schewe, K.-D., Design theory for advanced
datamodels. In Proc. ADC 2001, ACM Press, 2001,
3–9.

[15] Schewe, K.-D, and Thalheim, B., Limitations of
rule triggering systems for integrity maintenance in
the context of transition specification. Acta
Cybernetica 13 (1998) 277–304.

[16] Balaban, M., and Jurk, S., A DT/RT/CT framework
for integrity enforcement based on dependency
graphs. In Proc. DEXA 2001, LNCS 2113,
Springer, 2001, 501–516.

[17] Balaban, M., and Jurk, S., Effect preservation as a
means for achieving update consistency. In Proc.
FQAS 2002, LNCS 2522, Springer, 2002, 28–43.

[18] Link, S., and Schewe, K.-D., An arithmetic theory
of consistency enforcement. Acta Cybernetica 15
(2002) 379–416.

[19] Link, S., Consistency enforcement in databases. In
Proc. Semantics in Databases, LNCS 2582,
Springer, 2003, 139–159.

[20] Thalheim, B., Entity-Relationship Modeling –
Foundations of Database Technology. Springer,
2000.

[21] Levene, M., and Loizou, G., A guided tour of
relational databases and beyond. Springer, 1999.

[22] Buchmann, A.P., Carrera, R.S., and Vazquez-
Galindo, M.A., A generalized constraint and

exception handler for an object-oriented CAD-
DBMS. IEEE Conf. on OODBS, 1986, 38–49.

[23] Balaban, M., and Shoval, P., MEER - An EER
model enhanced with structure methods.
Information Systems 27 (2002) 245–275.

[24] Berztiss, A.T., Time in modeling. In Information
Modelling and Knowledge Bases XIII. IOS Press,
2002, 184–200.

[25] Malone, T.W., Crowston, K., and Herman, G.A.
(Eds.), Organizing Business Knowledge — The
MIT Process Handbook. MIT Press, 2003.

[26] Musa, J.D., Operational profiles in software-
reliability engineering. IEEE Software, Vol.10,
No.2 (March, 1993) 14–32.

[27] Lamsweerde, A.v., and Letier, E., Handling
obstacles in goal-oriented requirements
engineering. IEEE Trans. Software Eng. 26 (2000)
978–1005.2 Format, style and content

	2 Transactions and exceptions
	2.1 Classification of transactional exceptions
	2.2 Transaction systems
	2.3 Control and exceptions

	3 Exceptions and databases
	3.1 Occurrence of exceptions
	3.2 Specification of integrity constraints

