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Abstract

The concept of exception has been defined in 
diverse  ways.  We  relate  exceptions  to 
computational  transactions  and  to  control 
constructs.  Our view of  a  transaction is  very 
broad,  and  we  consider  transactional 
exceptions  to  be  instances  of  undefined 
function  values.  By  giving  different 
interpretations  to  “undefined”  we  arrive  at  a 
classification of transactional  exceptions.  Our 
primary interest is in information systems, i.e., 
in database transactions, and in processes that 
consist  of  such  transactions.  In  the  database 
context  we  show  that  liberal  treatment  of 
exceptions  is  simpler  than  total  quality 
management for consistency based on a set of 
constraints. We refer to control operations that 
link  transactions  into  processes  as  actions. 
Actions tend to be time-related, and time Petri 
nets provide actions with semantics. The time 
Petri  net  representation  indicates  where 
exceptions  can  arise.  We  also consider  high-
level monitors for the detection of exceptions. 
Although  our  emphasis  is  on  detection  of 
exceptions, their handling is also discussed. 

1 Introduction

An exception is some kind of deviation from the norm, 
and  exceptions  have  been  studied  in  the  contexts  of 
programming  languages,  information  systems,  and 
artificial  intelligence.  As  can  be  expected,  they  have 
been  defined  differently  in  these  areas.  Despite  their 
importance,  generally  they  have  not  been  given  the 
attention they deserve. For example, in the 1719-page 
2-volume  Handbook  of  Software  Engineering  and 
Knowledge Engineering exceptions receive a very brief 
mention in just two places: p.126 of [1], and p.742 of 
[2]. 

We begin by stating a few definitions from the literature 
to show the variability between them: 

1. An  exception  is  an  event  occurring  during 
execution  of  a  program  that  makes 
continuation impossible or undesirable [3]. 

2. Exceptions  are  features  that  were  added  to 
programming  languages  to  provide  the 
programmer  the  capability  to  specify  what 
would  happen  when  unusual  execution 
conditions occur, albeit infrequently [4]. 

3. An  exception  is  inconsistency  with  the 
program specification [5]. 

4. We start  by associating the occurrence  of  an 
exception with the violation of a constraint [6]. 

5. An exception is an unusual event, erroneous or 
not,  that  is  detectable  either  by  hardware  or 
software  and  that  may  require  special 
processing [7]. 

6. Exceptions  are  deviations  from  the  ideal 
sequence of events [8].

From this list we can abstract out three general themes. 
First,  the  classical  programming  language  approach 
(items  1  and  2):  an  exception  handler  aborts  the 
program, or  the  program continues  from the point  of 
detection of the exception after a corrective action has 
been  taken.  Second,  a  violation  of  the  software 
requirements  is  detected  (items  3  and  4).  Third,  an 
exception is a deviation from normality (items 5 and 6). 
This  may  be  an  event  or  condition  that  prevents  or 
delays the achievement of a goal that the user wishes to 
achieve.  The  goal-relatedness  is  not  an  essential 
characteristic  of  an  exception,  but  an  exception  is 
required to be a relatively rare occurrence. 

Another  way  of  classifying  exceptions  is  by  their 
causes. Here four types can be distinguished. The first 
type is an error, which may relate to design, operation, 
or organization. A failure that results as a consequence 
of an error can be regarded as an exception, but it is 
preferable  to  consider  it  as  a  problem  of  quality 
management rather than of exception management. The 
second type is operational nondeterminism. In a lengthy 
numerical computation we cannot predict in advance if 
and when floating point underflow will occur, and, if it 
does  occur,  whether  it  will  lead  to  division  by  zero. 
Even  if  a  computation  that  is  subject  to  operational 
nondeterminism  is  not  terminated  by  an  exception 
handler, the result of such a computation is unreliable. 
The best that an exception handler can then do is to give 
a  warning  to  this  effect.  The  third  type  is 
incompleteness.  A  software  system  operates  in  an 
environment (or  context),  which,  following McCarthy 
[9], we denote by (w,t), where w is a slice of the world 
at time t. Unfortunately it is rarely possible to determine 
in advance all the components of  w  that are relevant, 
and  how  the  relevant  components  are  expected  to 
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evolve  over  time.  It  is  impossible  to  determine  in 
advance  the  effect  of  these  components  on  a 
computation,  which  means  that  exceptions  due  to 
incompleteness require human intervention. The fourth 
type  corresponds  to  the  third  theme  listed  above, 
namely deviation from normality. 

Our  purpose  is  threefold.  First,  in  Section  2,  we 
introduce  a  uniform  definition  of  exceptions  that 
encompasses  all  the classes  introduced above.  In  this 
we distinguish  between exceptions  that  relate  to  data 
and  those  that  relate  to  control.  Second,  we  put 
emphasis  on  exceptions  that  have  received  relatively 
little  attention  in  the  past.  These  are  exceptions  that 
arise in databases or in processes consisting of database 
transactions.  They are discussed in Sections  3 and 4, 
respectively.  Section  5  introduces  a  monitoring 
approach  to  the  detection  of  unforeseen  exceptional 
conditions. Section 6 deals with the design of exception 
handlers.  Section 7 is  a  summary of  our  work and a 
look to the future. 

2 Transactions and exceptions

2.1 Classification of transactional exceptions

One way of interpreting a computational process is to 
consider it as a sequence of transactions, which may be 
combined by control operations. We view a transaction 
as  the  evaluation  of  a  function  f  for  an  argument  or 
input  x, where  x  and  f(x) can be single values or data 
aggregates  of  arbitrary  complexity.  The  transactional 
view is natural  for  database operations,  but  it  can be 
applied to any kind of computation. Thus  x  :=  a  is a 
transaction  where  “:=”  represents  the  assignment 
function, a is its argument, and x is the value obtained. 
If we regard the data workspace of the program as a 
rudimentary kind of database, this differs little from a 
conventional  database  update.  Transactions  can  be 
combined into composite transactions, i.e., transactions 
exist at different levels of granularity.  For example, a 
program  that  generates  the  inverse  of  a  matrix  is  a 
transaction made up of numerous primitive transactions. 

This  transactional–functional  view  is  somewhat 
artificial, but it allows us to define in a uniform way all 
exceptions except those relating to control. It also leads 
to  a  classification.  An  exception  arises  when  f  is  
undefined for a particular argument x. This definition is 
very  general,  but  different  interpretations  of 
“undefined” lead to different classes of exceptions. 

(a) Formal undefinedness. Examples of this are division 
by  zero,  and  square  root  of  a  negative  number.  The 
division function is undefined for a single value in its 
domain,  the  square  root  function  for  half  the  real 
numbers.  The  square  root  example  shows  that 
exceptions  can  relate  to  large  subsets  of  possible 
arguments. 

(b)  Processor-related problems.  Here  the  well-known 
examples  are  numerical  overflow  and  floating  point 
underflow. An arithmetic operation becomes undefined 

when the expected result is outside a processor-specific 
numerical range. 

(c)  Inapplicable attributes. This class if exceptions has 
been studied in the artificial intelligence context: “birds 
fly”  does  not  apply  to  all  birds.  Here  undefinedness 
relates  to  functions  that  have  to  do  with  flying,  for, 
example, the top flying speed for a class of birds. Of 
course, the top speed can be set to zero for penguins, 
but  a  weight-to-speed ration for  penguins  is  formally 
undefined. 

(d)  Null values.  An inapplicable attribute is  a type of 
null  value,  and  null  values  can  be  represented  in  a 
database  by special  markers  standing for  inapplicable 
(as in our Class c), or knowable but not known (name of 
spouse of a married person), or unknowable (the names 
of all residents of a particular house in Pompeii in the 
morning of August 24, A.D. 79). 

(e) Database constraint violation. Suppose that the total 
salary budget of a company is  S.  A salary increase is 
“undefined”  if  it  were  to  result  in  salary  expense  in 
excess of S. Database constraints often act as filters. For 
example,  if  a  transaction  is  to  be  applicable  only  to 
people  at  least  65  years  old,  then  it  is  undefined  for 
younger people, and applicability is defined by means 
of a constraint. This class of exceptions will be looked 
at in some detail in Section 3. 

2.2 Transaction systems

We  sketch  a  model  of  transactional  computation  in 
which a process is defined by a set of transactions and a 
set of actions that link the transactions into a process. 
Exceptions  relate  to  both  transactions  and  actions. 
Formally, a transaction system is the tuple < T,A,S,F >, 
where 

     T is a set of transactions, 
     A is a set of actions, 
     S is a set of signals, 
     F is a flow relation: F  (⊂ T × A)  (∪ A × T). 

In a conventional program the flow relation is implicit: 
unless otherwise indicated, statements are executed in 
the sequence they have in the program. 

The separation of  process  aspects from operations on 
data allows these components to be designed more or 
less independently of each other. Communication is by 
means  of  signals.  Transactions  send  out  signals,  and 
signals are picked up by actions. 

2.3 Control and exceptions

One  characteristic  of  transaction  systems  is  that  they 
often exhibit a time dependence. The dependence can 
be of two kinds. One relates to data that can undergo 
dynamic  change  over  time.  This  is  a  database 
management  concern.  The  other  relates  to  process 
control. Time-related exceptions include a deadline not 
being met by a single process, a transaction not taking 
place in a specified time window, and a rendezvous not 
achieved by several processes within a specified time 



window.  The  deadline  problem  is  also  known  as  a 
timeout situation. For example, a telephone user has to 
complete dialing within a specified time interval. 

An example of  the time window problem arises  with 
shunting of packages. As a package passes a bar code 
reader, its destination gate is determined, and the time 
of travel to the gate estimated — if the gate is opened 
too  early,  some  other  packages  will  enter  the  gate 
wrongly;  if  too late,  the package has  moved past  the 
gate.  In  the  rendezvous  problem,  suppose  the  first 
process arrives at time T. We require the other processes 
to  arrive  in  the  time  interval  (T,T  +  t),  where  t  is 
specified in the system requirements. 

Another  type  of  time  dependence  is  temporary 
exception: a transaction is to be part of a process, or, 
alternatively,  is  to  be  bypassed,  during  a  given  time 
period.  For  example,  Pennsylvania  sales  tax  is  in 
general  applied  to  computers,  but  there  have  been 
periods of time in which they have been exempt from 
the tax. During this time the transaction that deals with 
the sales tax in not to be invoked. 

A temporary  exception  defines  two processes.  In  our 
example the processes  are sale  with and sale  without 
sales tax. In other words, there is branching. In a more 
general sense we consider a process that consists of a 
normal  sequence  or  network  of  transactions,  and  of 
exceptions.  An  example  of  a  normal  sequence  is  a 
process  that  supplies  a  customer  with  money from a 
banking machine. Exceptional situations arise with the 
use  of  a  bank  card  that  has  been  reported  lost, 
withdrawal limits exceeded, machine out of cash, etc. In 
each instance there is branching. However, for this to be 
an exceptional  situation, one of the branches is  to be 
taken  rarely.  It  is  matter  of  subjective  judgement 
whether or not a branching event is an exception. For 
example, the Pennsylvania sales tax exemption applies 
to all purchases of computers over a given time period. 
In this sense it is not a rare occurrence. On the other 
hand, the sales volume of computers, to which alone the 
temporary exemption applies, is small compared to the 
sales volume of items subject to sales tax. 

Our coordination component is a collection of actions. 
Actions  are  started  by  signals  received  from 
transactions or sensors, or by clocks, or by people, or by 
some  combination  of  the  above,  and  they  invoke 
transactions. We shall represent transaction systems by 
time Petri nets (for examples see [10], for a theoretical 
survey  see  [11]).  Intuitively  we  expect  a  one-to-one 
correspondence  between  transactions  and  places,  and 
between  actions  and  transitions.  This  works  for 
transactions,  but  not  for  actions.  Because  of  the 
complexity  of  today’s  systems,  arbitrary  complexity 
must  be  allowed  for  in  the  specification  of  actions, 
although in most applications very little of this power is 
needed. An action is thus represented not  by a single 
transition, but by a Petri net that can reach considerable 
complexity.  Such  a  representation  of  actions  is 
discussed in detail in Section 4. 

3 Exceptions and databases

3.1 Occurrence of exceptions

Database  systems  are  designed  to  be  robust  against 
errors. Error-handling facilities such as 

• a  transaction  manager  for  management  of 
concurrent  access  and  computation  on  the 
database, 

• a  recovery  manager  for  treatment  of  system, 
hardware, and software faults, 

• an  authorization  and  security  manager  for 
detection  of  intruders  and  security  violation, 
and 

• an  exception  programming  environment  for 
explicit specification of exceptions

are integrated into the system. Nevertheless, a number 
of other exceptions force the database developer and the 
database programmer to explicit treatment of deviations 
from the “normal” state. 

Exceptions may occur due to 

• modeling  incompleteness  caused  by 
incomplete  knowledge  of  the  application 
domain  and  insufficient  coverage  of  the 
concepts represented in the schema, 

• insufficient  implementation  support  for  the 
database lifecycle, restrictions of modeling and 
programming languages, lack of attention by a 
modeler,  and [12] a local instead of a global 
view of database constraints, 

• pragmatic  assumptions  made  during  the 
database  life  cycle,  hidden  assumptions 
regarding  what  is  the  normal  case  in  an 
application,  overlooked  cases,  or  a  restricted 
scope of users, 

• distributed  computing  of  transactions  under 
different  commit  protocols  such  as  2PC 
(problems  of  coordination,  timeout  of 
connections), 

• internal  organizational  or  computational 
restrictions  of  the  database  management 
system such  as  buffer  management,  memory 
restrictions, time restrictions etc.

It  is  usually assumed that a run of a database system 
fulfills the atomicity property, i.e. a transaction is either 
entirely successful and thus leads to a state change or is 
not  having  any  effect  on  the  data.  Exceptions  may, 
however,  lead  to  unexpected  behavior.  Since  each 
concept used in the database schema may have its own 
exceptional  cases,  the  representation  of  all  possible 
exceptions can lead to combinatorial explosion and to 
severe  management  problems.  Thus,  we  need  a 
mechanism that allows an “orthogonal” management of 
exceptions in the sense that each type has its own set of 
exceptions and an exception handler is called whenever 
an  exception  occurs.  Such  orthogonalization  of 
exceptions  is  based  on  the  introduction  of  general 
exception types. These general exception types may be 
instantiated by the exception handler in a restricted part 



of  the  database.  The  instantiated  exception  programs 
may then handle the exceptions. 

3.2 Specification of integrity constraints

We  give  particular  attention  to  the  development  of 
general  exception  rules  that  are  to  support  integrity 
constraints  and  show  how  integrity  constraint 
enforcement is to be integrated with exception handling. 
As  summarized  in  [13],  the  variety  of  static  and 
dynamic integrity constraints is very large. Classically, 
database  integrity  constraints  are  specified  as  logical 
formulas. The logical framework provides a simple and 
powerful  mechanism  for  treating  the  implication 
problem,  for  handling  constraint  sets,  and  for 
associating constraints with the database structures. But 
the  framework  neglects  global  effects.  Also,  if  all 
possible exceptional cases are considered, the result in 
an  overspecification.  On  the  other  hand,  if  only  the 
“normal”  case  is  considered,  the  result  is 
underspecification.  Moreover,  normalization  may 
introduce rigid constraint enforcement and thus leads to 
additional exceptions. 

Database management systems do not support integrity 
constraints in full, restricting support for the most part 
to simple constraints such as primary key constraints, 
key  dependencies,  domain  constraints,  and  referential 
inclusion  dependencies.  Functional  or  multivalued 
dependencies  are  not  supported.  Normalization  of 
structures  has  been  developed  for  treatment  of 
functional  or  multivalued  dependencies.  SQL-99 
provides  more  powerful  database  structuring 
mechanisms, but the treatment of constraints within this 
structuring framework has been an open problem [14]. 

The enforcement of integrity constraints is thus left to 
assertions,  triggers,  of  stored  procedures.  Constraint 
enforcement thus becomes a difficult task. Trigger sets 
may  lead  to  trigger  avalanches  or  to  non-intended 
effects. For instance, an insertion of a tuple may lead to 
deletion of  all  values  of  the tuple  from the  database. 
This behavior is based on the presence of critical paths. 
In  [15]  a  sufficient  and  necessary  condition  for  the 
existence  of  critical  paths  has  been  given.  Effect 
preservation is far more difficult. It has been tackled in 
[16–19].  We  list  now  a  number  of  aspects  of  the 
constraint  satisfaction  problem  that  suggest  why  the 
treatment  of  constraints  via  exceptions  can  be  very 
useful. 

Rigidity of validity: 
Some integrity constraints are very important in 
an  application  area.  Others  are  less  important. 
Users can often “live” with temporary violations 
of the latter. Soft constraints [20] are constraints 
whose satisfaction is desirable, but not essential. 

Behavior in presence of null values: 
Null  values  carry  a  variety  of  different 
semantics.  Most  constraints  are not  defined on 
null  values.  The  behavior  of  some  types  of 
constraints  such  as  functional  dependencies 
becomes  cumbersome  if  null  values  are 
permitted [21]. 

Exceptions of validity: 
In the daily operation of a database exceptions 
may arise due to various reasons. In some cases 
a constraint may be allowed to be invalid within 
a  time  interval.  A validity  exception  may thus 
violate transaction semantics. 

Enforcement time: 
Validity  of  constraints  may  be  enforced  at 
different points of time. This situation has been 
taken into account to some extent. For instance, 
SQL-99,  allows one  to specify that  constraints 
are to be enforced whenever a tuple that might 
violate the constraint is modified, or at the end of 
the  transaction,  or  based  on  the  occurrence  of 
some events. But the consistent management of 
constraint  enforcement  time  is  still  an  open 
problem. 

Partial satisfaction of constraints: 
Constraints may be partially or totally satisfied 
[22]. We may collect all those tuples for which a 
constraint is not satisfied into a separate database 
unit. 

Execution time deadlines: 
Constraints  may  be  violated  due  to  the  late 
arrival of data or events. A contingency plan or 
contingency  transactions  may  be  invoked  with 
guaranteed execution time characteristics.

Classically, integrity constraints are locally specified on 
the  conceptual  level  without  consideration  of  their 
enforcement  and  their  scope  within  the  schema. 
Constraint  enforcement  is  added  during  the 
implementation phase. The environment of a constraint 
is formed by the associated types and by the effect of 
enforcement  policies  on  other  types  and  their 
constraints. SQL:1999 supports a number of strategies: 

Direct enforcement 
can be automatically generated for declarative 
constraints on the basis of policy enhancements, 
such as RESTRICT, NO ACTION, CASCADE, 
SET VALUE (null, default), 
[INITIALLY] IMMEDIATE [DEFERABLE]. 

Transactions 
provide three mechanisms for dealing with 
failure: 
(1) rollback whenever an inconsistency is 
detected at the end of the transaction; 
(2) advanced transaction models that erase the 
effects of a transaction by explicit specification 
of compensating transactions; 
(3) DBMS support in the raising of an exception. 

Triggers 
are procedures that may be automatically 
activated whenever an event occurs and a 
condition becomes valid. We may distinguish 
between integrity enforcement that depends on 
after-before activation time, on row-statement 
granularity, and on the possibility to use 1-n, n-1, 
or n-n event-trigger pairs.

The specification of integrity constraints should include 
their environment and the constraint enforcement policy. 



Policies have been introduced in [17]; the environment 
has been discussed in [20]. Constraints are expressed as 
logical formulas. They can be restricted to a limited part 
of  the  database,  called  a  unit.  They  can  be  partially 
violated.  Exceptions  for  a  constraint  may  be  defined 
explicitly.  The  enforcement  policy  is  specified  by  an 
enforcement  rule  with  some  kind  of  contingency 
framework.  These  principles  are  embedded  in  the 
following  schematic  logical  formula  or  frame,  which 
supports all the database exceptions discussed above: 

 3.3 Examples of database exceptions

For our example we take a small database in which are 
stored data on persons, on cars, and certain associations, 
e.g.,  that  a  car  is  owned  by  a  person,  where  we  let 

“own” to mean that  the car has been purchased or is 
leased. Once a car is  owned by somebody,  insurance 
coverage must be obtained. A number of “exceptional” 
states  may  arise,  brought  about,  for  example,  by  the 
short interval within which insurance coverage has to be 
obtained or payments made to a dealer. In addition, cars 
may be  returned to  dealers,  or  may be scrapped.  We 

could model all these specific cases by separate types, 
could  use  very  general  constraints  to  cover  all 
exceptional  cases,  or  use  constraints  that  change 
dynamically  depending  on  the  state  of  objects.  Such 
solutions lead to complex schemata that are difficult to 
understand,  are  not  extensible,  and  have  infeasible 
constraint maintenance. A better approach is to consider 
schemata with explicit specification of exceptions. We 
base our example in which this is done on the Entity-
Relationship schema of Fig.1, which is expressed in the 
HERM notation (see [20]). 

Whenever car data are inserted into the small database, 

the corresponding person data must already exist or 
must be inserted too. We may specify this constraint as 
follows: 

The constraint can be equivalently expressed by the 
inclusion constraint 
Car  ⊆ Owned_By[Car]. 
We may, however, envision that a very small portion of 
cars stored in our database have no owners. An example 
is a car still waiting for a customer at a dealership. The 
constraint may be expressed as follows: 

Integrity Constraint  
    [Localization: < unit_name > ] 
    [Partiality: < validity condition >] 
    [Exception: < exception condition >] 
    [In-Context: < enforcement rule, time, granularity >] 
    [Out-Context: < conditional operation, accept_on >] 
All components of this frame are optional.

Car_Must_Be_Owned_By_Person card(Owned_By, Car) = (1,n) 
Localization: registration_department 

Car_Must_Be_Owned_By_Person card(Owned_By, Car) = (1,n) 
Localization: registration_department 
Partiality: if Car  ⊆ Cars_With_Dealer ... 
Exception: Unknown_Ownership 

Fig.1. HERM diagram of the car ownership schema.



The constraint can be equivalently expressed by the 
inclusion constraint 
Car \ with_Dealer[Car] ⊆θ Owned_By[Car]. 

We use the threshold value θ for expressing the size of 
the set of cars to which the exception may be applied. 

The exception can be specialized as a set of policies:  
However, the specification as a set of policies tends to 
be  error-prone  and  cumbersome,  which  further 
strengthens  our  view that  constraint  violation  is  best 
dealt with as exception management. 

Furthermore,  we  may  state  that  the  beginning  of  an 
ownership of a car identifies the owner. This constraint 
is expressible by a functional dependency: 

Owned_By : { Car, From } → Owned_By . 

This  constraint  may  be  interrelated  to  the  previous 
constraint:  

Functional dependencies are total constraints. We may 
also consider functional dependencies with null values. 
But this treatment also becomes very complex. 

The  example  shows  that  explicit  treatment  of  all 
exceptions  may  become  a  nightmare.  Moreover, 
consistency  of  constraint  enforcement  policies  is  not 
axiomatizable and is not decidable [14]. Therefore, we 
must  either  restrict  constraint  enforcement  to  the 
“good”  cases  or  leave  constraint  enforcement  to  the 
DBMS and the programmer. The total specification of 
all possible cases is already infeasible on the local level 
since  the  policy  for  an  n-ary  relationship  type  is 

specified by 3n+1 sub-policies. The deferred mode must 

be  embedded  into  transaction  management.  We  also 
may enforce integrity constraints at the row level or at 
the  statement  level.  The  combination  of  policies  will 
lead  to  a  global  integrity  constraint  [13]  if  it  can  be 

derived  and  computed.  If  we  consider  real  life 
applications  with  a  typical  size  of  hundreds  if  not 
thousands  of  types,  then  treatment  on  the  basis  of 
policies  becomes  entirely  infeasible.  In  this  case  the 
‘best’ option is the pessimistic treatment of consistency, 
i.e., to entirely forbid any violation of consistency. 

One goal of this paper is to show that we may weaken 
consistency  enforcement  by  liberal  constraint 
enforcement  through  acceptance  of  exceptions.  This 
liberal treatment seems to be appropriate as long as we 
can  specify  a  strategy  that  does  not  lead  to  an 
overwhelming volume of exceptions. 

4 Exceptions and processes

4.1 Representation of actions

As noted earlier we view a computational process as 
composed of transactions and actions. Our experience 
has shown that textual representation of a complex 
action is easier to understand than the corresponding 
Petri net, but text is often ambiguous, and, as we 
discuss in detail in [24], this is the case with the 
specification language looked at here. Components of 
the language are therefore provided with standard 
interpretation in terms of time Petri nets. An example of 
an action: 

Car_Must_Be_Owned_By_Person card(Owned_By, Car) = (1,n) 
Localization: registration_department 
Partiality: if Car  ⊆ Cars_With_Dealer ... 
Policy: 

On INSERT(x) Into Car If x ⁄  owned_by[Car] Do INSERT Into owned_by Immediately 
On DELETE(x) From Car Do DELETE (.x) From owned_by Immediately 
On UPDATE(x) On Car Do Cascade UPDATE On owned_by Immediately 
On INSERT(x) Into owned_by If x.Car ⁄  Car Do No_Action Deferred 
On DELETE(x) From owned_by If card(σCar=x.Car(owned_by)) = 1 Do Restrict Immediately 

On UPDATE(x) On owned_by Do No Action Immediately 
On DELETE(x) From Person If x  owned_by[Person] Do No Action Deferred 
On UPDATE(x) On Person If x  owned_by[Person] Do Cascade Deferred 

Car_And_Date_Identify_Person Owned_By : { Car, From } → Owned_By 
Localization: registration_department 
Partiality: Unknown_Current_Ownership_Car_Again_With_Dealer 
Exception: Unknown_From_Date 

   ACTION Example; 
      @(p) ON(SigA(a,b)) IN(0,q) EXCEPTION(ExA) :: 
      DELAY(x,y) EXCEPTION(ExB): 
      (TrA(a,b), TrB(b)); 
     ENDACTION



This action is initiated by a clock at time p. The action 
continues if signal SigA arrives no earlier than p and no 
later than p+q — this is what the IN component checks: 
unless the arrival of the signal is within the time interval 
(0,q) with respect to p, an exceptional condition arises, 
and the action terminates by invoking exception handler 
ExA. Otherwise, after a delay of between x and y time 
units, where the exact length of the delay is selected by 
an  operator,  transactions  TrA  and  TrB  are  started. 
However, if the operator has neglected to initiate these 
transactions after y time units, exception handler ExB is 
invoked. This example shows a process controlled by 

both software and people. (In a simulation study the 

length of the delay would be determined by a random 
number generator.) 

The  syntax  of  the  language  for  the  specification  of 
actions consists of seven productions expressed in BNF: 
Square brackets indicate that the item enclosed in the 
brackets is optional. If square brackets are followed by 
the symbol *,  then the enclosed item may be present 
zero or more times; if followed by +, then the item must 
be  present  at  least  once.  The  symbol  |  indicates 
alternation,  e.g.,  A ::=  B|C  indicates  that  A may  be 
rewritten as B or as C. The example given above makes 
the syntax largely self-explanatory. 

The  form  of  identifiers  and  expressions  (ActionId, 
TimeExp, SigId,  Exp) is  left  undefined.  The PrimAct 

Fig.2. Components of actions

1. <Action>:: ACTION [<ActionId>]; 
   <Activator>:: [<ActPart>;]* 
ENDACTION 

2. <Activator>::= ON<Sig> | ON(<Sig> [,<Sig>]+)OFF <TPart> | 
   @<TPart> [ON(<Sig>) [<EPart>] | 
      ON(<Sig>)IN <TPart>] 

3. <TPart>::= (<TimeExp> [,<TimeExp>]) [<EPart>] 
4. <Sig>::= <SigId> [(<Exp> [,<Exp>]*)] 
5. <EPart>::= EXCEPTION(<PrimAct>) 
6. <ActPart>::= [<Delay>] 

   [<PrimAct> | (<PrimAct> [,<PrimAct>]*)]+
7. <Delay>::= DELAY <TPart> [<EPart>]: 



stands  for  a  transaction,  which  may be  an  exception 
handler, or the activation of a mechanical device, or a 
message sent to a human operator. 

The only component not used in the example is OFF. It 
becomes necessary when several conjoined signals are 
required,  as  in  ON(SigA,SigB)OFF(15).  This  is  a 
synchronization  mechanism:  the  action  does  not 
advance until all the signals have been raised. But if a 
signal does not get raised in the time period in which it 
is expected to be raised, the system freezes. To avoid 
this,  the  mandatory  OFF  is  provided.  After  a  time 
interval s (here s = 15 time units), measured from when 
the  first  signal  in  the  set  is  raised,  all  signals  are 
switched off, and an exception handler is invoked. Here 
as everywhere else, the exception handler may decide to 
take corrective steps or to abort the action. Exceptions 
may be handled by computer programs or by people.  

We  have  modified  time  Petri  nets  by  allowing  clock 
readings to specify the time an action is to be initiated. 
In terms of the syntax, a TPart preceded by the symbol 
@ represents clock readings; otherwise the TPart has its 
conventional  interpretation.  Fig.2  provides  a  standard 
interpretation  of  the  components  of  an  action.  Every 
action can be represented by a time Petri net composed 
of the subnets of Fig.2. A broad arrow represents one or 
ore arcs.

Case  (i)  corresponds  to  the  first  alternative  of 
Production 2 — a signal starts an action. In Case (ii) 
several signals initiate an action, and this corresponds to 
the  second  alternative  of  Production  2.  Case  (ii)  is 
complex,  and  its  representation  is  merely  schematic. 
The form of the net depends on the number of signals 
that are to be conjoined. In Fig.3 we show the detailed 
net  for  two conjoined signals.  In this net,  place  X is 
initially to hold a token. Suppose that a signal is raised 
first  by  the  transaction  represented  by  A.  Then  the 
transition that leads to P fires, removing the token from 
X, and we wait for the signal from B. If it  arrives in 
time,  i.e.,  before  s  time  units  are  up,  the  action 
continues.  If  not,  the exception transition fires.  If the 
signal  from  B  arrives  first,  the  situation  is 
symmetrically analogous. 

In  Case  (iii)  the  action  is  initiated  by  a  clock  or  a 
person.  If  initiated  by  a  clock,  the  setting  would 
normally be  c = d, but in a simulation study a random 
time  within  the  interval  (c,d)  could  be  selected.  If 
initiated  by  a  person,  a  time  period  defined  by  two 
different  clock readings would be usual.  If the action 
has  not  been  started  at  time  d,  an  exception  arises. 
Cases  (iv)  and  (v)  interpret  the  two  optional 
components that can follow a clock-based initiation. In 
Case (iv) a signal has to be on at the time of initiation of 
the  action  —  this  signal  is  issued  by  a  transaction 
represented by place B. If the signal is not on, we have 
an exception. In Case (v) we also require a signal to be 
on after the clock-based initiation, but not immediately. 
Rather, it should come on at a time within (T + p,T + q), 
where  T is  the  time  at  which  the  action  is  initiated. 
Exceptional situations arise if the signal is already on at 
T + p, or has failed to come on by T + q. An example 
arises  with  package  routing  by  means  of  destination 
gates.  Suppose a bar code reader selects a gate for a 
package. The bar code reader also initiates the action. 
The gate should not open too early or too late. Here the 
signal is issued by the gate-opening mechanism at the 
time it opens the gate. 

In the remaining case there is to be a delay of between a 
and  b  time units, and, as we noted earlier, a manager 
determines the precise length of the delay. An exception 
arises if the manager fails to resume the action before 
the delay time is exceeded. 

Fig.4 shows the Petri net corresponding to our example 
of an action. It is built up from the components of Fig.2 
in a mechanical  fashion. We leave it  to the reader to 
identify  the  places  and  transitions  that  correspond to 
Cases (iii), (v), and (vi) of Fig.2. The author finds the 
specification of the action as text easier to follow than 
the  net  of  Fig.4,  but  the  net  removes  interpretation 
ambiguity.

Fig.3. Conjunction of two signals



4.2 Example of a process

In Section 3 we looked at exceptions in the context of a 
database  relating  to  ownership  of  cars.  Here  the 
example is extended into a process that a car undergoes 
from its manufacture to its final disposal. Fig.5 shows 
the process participants and lines linking them. Directed 
lines represent transactions that transfer a car from one 
participant to another, and we have attached a label to 
each such line. 

The initial transfer of the car is from factory to a 
dealership (Label a). There the car can be sold or leased 

(b and c, respectively). An owner may resell the car 
privately to another entity of type “Owner” (d) or to a 
dealership (e). The car may be repossessed by a 
dealership if the car was bought on terms, and no 
payments are made (f), and similarly for a leased car 
(g). At the end of the lease period the car is to be 
returned to the dealership, but under special 
circumstances an earlier return may take place (Label 
h). One cause for early return is damage to the car. If a 
car is damaged beyond repair, the insurance company 
takes over what is left of the car (Label i if the transfer 
is from a dealership; Label j if from an owner), and 
scraps the car (k). A car may also be scrapped by an 
owner (m) or a dealership (n). 

Some  of  the  lines  in  Fig.5  do  not  represent  single 
transactions.  For,  example,  under  h,  we  have  to 
distinguish between normal and early return, and in the 
latter case, between a total-loss collision, in which case 
h is at once followed by i, and an early return arising 
from  lease  cancellation  by  a  lessee.  Although 
repossession is also an early return, a separate line (line 
g)  is  necessary  because  this  return  is  initiated  by  a 
dealership. 

Fig.5 represents a distributed process. The transactions 
relate to different databases, maintained by dealerships 
and  insurance  companies.  An  additional  process 
participant  is  the  motorcar  registration  office  with  its 
database.  We  do  not  show  this  participant  explicitly 
because it is not itself in possession of cars. 

Now let us look at some exceptions that can arise. They 
all  involve  a  time  constraint.  A dealership  arranges 
temporal  registration and insurance for  a  car  when it 
sells it, but the new owner has to arrange for permanent 
insurance and permanent registration within a specified 
time  period.  Similarly,  in  an  owner-to-owner  sale, 
arrangements have to be made for insurance coverage 
and  registration  transfer  within  a  time  limit.  For 
example, in 

   ACTION Insurance; 
      ON Sig(CarX) :: 
      DELAY(0, Limit) EXCEPTION(HandlerA): 
      Insure(CarX); 
     ENDACTION 

the exception handler HandlerA is invoked if the action 
part that follows the DELAY has not been started Limit 
time  units  after  signal  Sig  has  initiated  the  action. 
Similarly,  after  a  repossession,  registration  and 
insurance have to be taken over by the dealership within 
a specified time period. 

Normally a leased car is to be returned at the end of the 
lease period. Here two exceptional conditions can arise: 
the car is returned before the end of this period, or it is 
not returned at the end of this period. Both cases are 
covered by 

   ACTION LeaseReturn; 
      ON Leased(CarY ) :: 
      DELAY(0, Leaseperiod) EXCEPTION(Late): 
      Return(CarY ); 
     ENDACTION 

Fig.4. The net of an action

Fig.5. The lifetime process of a car



If the car is returned before the end of the lease period, 
then this is taken into account by the transaction Return, 
which is invoked by an operator; if there has not been a 
return at the end of the lease period, exception handler 
Late is invoked. Note that early return may be due to an 
accident. Action  LeaseReturn raises questions. First, if 
there is an early return, why not invoke Return directly, 
instead of taking our roundabout approach? The reason 
is that the action has to be terminated. Otherwise, after 
the end of the normal lease period, although the car had 
already been returned, exception  Late  will be wrongly 
raised. Second, what if an exceptional situation arises 
within  the  action  itself?  A lease  may  cover  several 
years. During this period the code of  LeaseReturn may 
get  changed,  or  a  move  of  the  system  to  another 
platform may cause the clock-based trigger that should 
raise the exception to malfunction. This can be handled 
by monitors, which we discuss in Section 5. 

The  main  problem  of  exception  management  is  the 
determination of what to do when an exception has not 
been anticipated in system design. In our example we 
have  not  considered  what  happens  when  a  car  gets 
stolen, or is confiscated because of its involvement in a 
crime,  or  is  impounded  because  of  failure  to  pay 
parking fees. In the latter two cases an authority may 
sell  the  car.  Here  we  are  becoming  aware  of  the 
oversights  still  during  the  design  phase,  but  it  could 
well  happen  that  a  system  is  made  operational  with 
these flaws. 

Let  us now consider  a  situation in which a customer 
requests from a dealership a car with a specific attribute 
set  Q.  The  request  is  forwarded  to  the  factory,  and 
several possibilities can arise. First, the specified car is 
available  for  immediate  delivery.  This  is  the  normal 
situation,  covered  by  the  transfer  from  factory  to 
dealership to owner shown in Fig.5 as lines a and b. 
Second, the car can be made available, but after a delay. 
Two exceptional situations can arise: (a) the customer 
finds the delay unacceptable; (b) the factory may not be 
able  to  supply  the  car  within  the  initially  suggested 
delay period. Another type of exception arises when the 
factory does not respond to the initial request within a 
reasonable time period. Except when an order can be 
filled at once, this special-order process is separate from 
that of Fig.5 because the car being considered does not 
yet exist. 

4.3 Exception patterns

Both the example actions shown above have the same 
pattern,  which we express in terms of  the irreducible 
components of our grammar: 

   ACTION <ActionId>; 
      ON <Sig> :: 
      DELAY(<TimeExp>, <TimeExp>) 
      EXCEPTION(<PrimAct>): 
      <PrimAct>; 
     ENDACTION 

Actually the pattern embodies Case (vi) of Fig.2. Cases 
(ii), (iii), (iv), (v), and (vi) can be regarded as generic 
exception patterns for processes. Fig.6 illustrates an 

instance of Case (ii) of Fig.2. Transactions TraX and 
TraY send out signals SigA and SigB. In addition, SigC 
and SigD are sent out by some other transactions. 
Action Act1 is to be initiated by a conjunction of signals 
SigA, SigB, SigC, and Act2 by a conjunction of SigA, 
SigB, SigD. Now, if Act1 picks up SigA and SigC, and 
Act2 picks up SigB and SigD, both actions go into a 
wait state — a deadlock situation has arisen in which 
Act1 waits for the now unavailable SigB, and Act2 
waits for SigA. Deadlock can be prevented by by a 
mutual exclusion mechanism, but a simpler solution is 
to invoke an exception handler that allows, say, both 
actions to proceed even though each of them lacks one 
of the required signals.  

Thus there are essentially just five basic exception types 
associated with actions. In addition there is the case in 
which a  signal  fails  to  be  issued  over  a  suspiciously 
long time period. This small number appears to be in 
conflict with the 260 exception types collected by the 
MIT  Process  Handbook  Project  [25],  but  we  should 
note that many of the latter are essentially design errors, 
such as “ goals contain conflicts or inconsistencies,” or 
“process  contains  design flaws” [8].  Our contribution 
has been to show that there there is a very small number 
of  basic  components  of  an  action,  and  to  make 
exception  detection  a  precisely  defined  part  of  these 
components. 

5 Monitor-based exception detection

In  Case (i)  of  Fig.2 an action is  to be  initiated by a 
signal.  No  link  to  an  exception  handler  is  provided 
because  the  absence  of  a  signal  need  not  imply  an 
exceptional  situation.  However,  if  an  action  is  to  be 
initiated by a signal, then we do expect this signal to be 
raised eventually. A similar situation can arise with Case 
(ii). Here an exception is detected when some signals do 
not arrive in time, but no provision is made for a case in 
which the system has to wait for the first of the signals 
an inappropriately long time. We do not want to impose 
time constraints on the signals, primarily because they 
could differ for different instances of an application, but 
we still need to make sure that the absence of signals is 
not  due  to  communication  failure  or  some  other 
anomaly. The detection of anomalies can be handled by 
monitors. Exception monitors serve several purposes. 

Fig.6. A deadlock situation



First, they act as a safeguard in case exception detectors 
and  exception  handlers  are  faulty.  A  problem  with 
handlers is that  they may not be adequately tested.  If 
test  case selection is  based entirely on an operational 
profile (on operational profiles see, for example, [26]), 
then  exception  handlers,  because  they  are  rarely 
invoked, may not get tested at all. 

Second,  monitors  should  be  made  responsible  for 
detecting and handling exceptional situations that have 
not  been  handled  in  system  requirements.  In  a 
disciplined process for the development of information 
systems,  requirements  should  be  a  refinement  of  the 
goals  that  an  enterprise  has  set  for  the  information 
system. It has been suggested that an exception monitor 
should  be  based  on  such  goals  [27].  However,  if 
monitors  are  to  be  goal-based,  why  not  make  the 
requirements a complete refinement of the goals? This 
shows  that  we  are  dealing  with  a  difficult  research 
topic. We leave it for the future. 

Third,  monitors  should  be  a  safeguard  against 
communication breakdowns. In case a signal does not 
initiate an action when expected, there can be multiple 
causes that we examine in the next section. One such 
cause is the failure of a communication link. A monitor 
can  survey  the  situation  and  establish  an  alternative 
communication path. 

6 Exception handlers

An  exception  detector  merely  established  that  an 
exception has arisen, and invokes an exception handler. 
A major aim of the developers of information systems is 
to implement exception handlers as software. Here we 
look  in  general  terms  at  the  structure  of  a  software 
exception handler. 

The first step is to establish the precise cause for the 
exception.  This  also  applies  to  exception  handling 
carried  out  by  humans.  For  example,  if  an  expected 
signal has not arrived from transaction X, there can be 
the following causes: 

• communication failure between X and the 
action; 

• transaction X was not initiated; 
• transaction X has failed; 
• a partial redesign of the process has resulted in 

turning the action into dead code.

Next the selected cause has to be examined further. For 
example,  if  transaction  X was  not  initiated,  then  the 
exception relates not to the action, but to transaction X. 
The  reason  why  X  was  not  initiated  could  be  that  a 
human operator was not available to initiate it, or that a 
different transaction was initiated in error.  The failure 
may sometimes have to be traced back through a chain 
of transactions and actions until  the actual  reason for 
the  exception  has  been  established.  Only  then  can 
corrective  action be undertaken.  As part  of  this  there 
should be an estimate of the actual damage, monetary or 
as reduced goodwill, that the exceptional situation has 
caused. 

7 Summary and a look to the future

We have considered exceptions in two contexts: as they 
relate to database transactions, and as they can arise in 
process execution. With regard to database transactions, 
we demonstrated how different kinds of exceptions may 
be used for handling violations of integrity constraints. 
The exception handler calls a program that moves the 
database  into  a  state  that  is  consistent  with  the 
specification.  A  temporal  violation  of  integrity 
constraints is allowed as long as the exception handler 
allows the transaction to reach a consistent state. With 
regard to processes, we have made explicit the detection 
of  exceptional  situations  in  our  language  of  actions, 
which in an earlier form was introduced in [24]. 

The very general definition of transactions in Section 2 
suggests that the “action-language” of Section 4.1 can 
be added as a coordination component to any modular 
specification language that needs only to be extended to 
allow for  the  sending  out  of  signals,  or  that  already 
possesses  such  capability.  The  transformation  of  the 
action  specifications  into  executable  code  should  not 
present difficulties. For ease of implementation, signals 
should  then  be  directed  to  specific  actions,  which 
implies that the naming of actions becomes mandatory. 

In  Section  4.3  we  saw  that  actions  follow  general 
patterns that are based on the components of actions of 
Fig.2.  This  enables  us  to  pinpoint  precisely the  point 
from which a backward trace through the system is to 
lead to the actual cause of the exception. Sometimes the 
response to an exception has to take place so rapidly 
that human response times are inadequate. The precise 
localization of  the manifestation of  exceptions should 
help  toward  the  automation  of  exception  handling. 
Unfortunately this is not enough. We saw that although 
the number of basic types of exceptions is small, there 
can  be  a  variety  of  causes  for  an  instance  of  an 
exception.  Consequently,  cause-effect  relationships 
have to be examined very thoroughly,  and the cause-
effect analysis automated to the greatest extent possible. 

In Section 5 a brief introduction was made to exception 
detection  my  monitors.  The  design  of  monitors,  or, 
rather, the establishment of general principles to guide 
their  design,  we  consider  a  very  important  research 
topic.  If  an  exception  manifests  itself  to  the  system 
merely as a failure, then the search for its cause can be 
laborious  and  difficult.  Monitors  can  be  designed  in 
such a way that they detect causes directly. 
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