
Agustina Buccella1, Miguel R. Penabad2, Francisco J. Rodriguez2,
Antonio Fariña2, and Alejandra Cechich1

1 Departamento de Ciencias de la Computación,
Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén, Argentina

{abuccell,acechich}@uncoma.edu.ar
2 Laboratorio de Base de Datos, Departamento de Computación

Universidade da Coruña, Campus de Elviña s/n, 15071 A Coruña, Spain
{penabad,fari}@udc.es, franjrm@uvigo.es

The use of ontologies and ontology languages
like OWL has attracted much attention, mainly
in the Semantic Web and the information
integration research fields. We have addressed
the latter issue, proposing an architecture and a
method, based on the use of ontologies, to
integrate several sources of information,
possibly of different natures, into a federated
system. In this paper, we address the first step
of our integration method: to automatically
build an initial ontology from an existing
database that is to be integrated in the
federation. We show a procedure that takes as
input the relational schema (the SQL “create
table” sentences) of an existing database and,
following a set of rules, transforms it into an
OWL ontology. The initial ontology can be
later modified or extended, if more semantic
knowledge about the domain is needed

The federation of different data sources is a long-
standing and thoroughly studied problem. Since the
appearance of the ontologies and the proliferation of the � � � � � � � � � � 	

, this problem has regained much
attention.

The autonomy of the information sources, their
geographical distribution and the heterogeneity among
them, are the main problems we must face to perform
the integration [12]. The semantic heterogeneity has
been one of the most researched aspects in the last
years. Works like [9,14] are aimed to fill the semantic
gap among the information sources, using the semantic
information provided by the ontologies.

In recent works [4,5,6] we have proposed an
architecture and a method to solve semantic
heterogeneity problems [18]. Figure 1 shows a part of
the architecture of our federation system, which is based
on a hybrid ontology approach [19]. As we can see, the
architecture is composed of a
 � � 	 � � � � � � � �

 or � � � � � �

� � � � 	 � � � �
 containing the generic concepts that will be
used to query the system, and one � � � � � � � � � � � �

 for

each data source. The � � � � � �

 � � � � � �
 � � � �
component deals with the information flow between the
source ontologies and the shared vocabulary. Once the
user chooses the concepts from the global ontology and
makes the query, the system will use the OM to know
the related concepts on each information source. The

� � � � � � � � � � � �
 � � � are used for this purpose, given that
they provide the specific terminology for the
information sources and the means to obtain the desired
data.

 � � � � � �
 A part of our integration system

The method we propose to add a new data source to
an existing federation consists of two main stages: 	 � � � � � �
 � � � � � � � � � � � � � � �

 and

	 � � � � � �
 � � � � � � � � �
 �	 �

 � � � � � � � � � � � �
� � � � 	 � � � �
 . These stages are briefly explained below.
See [5,6] for a full explanation.

� � � � � � �
 � � � � � � � � � � � � � � �

 This stage takes as input
a data source and its result is an OWL ontology [17,1]
for the data source. It contains two main steps:

 � � � � � � � �
 � � � � � ! � � � � � � � � � � � � �

 " and
� � � � �

� � � � � � � � � . The first step, building an initial ontology
from the source, is the aim of this paper, and will be
described in the following sections. The second stage, � � � � �
 � � � � � � � � � , allows the expert user (for example,
using an ontology editor as Protégé [10] with the OWL
plug-in) to add restrictions, classes and/or properties to
the initial ontology. Knowing the domain of the

information source and understanding the structures, the
user is able to provide more semantics to the ontology.

� � � � � � �
 � � � � � � � � �
 � 	 �

 � � �
� � � � � � � � � � � � � 	 � � � �
 : This stage contains three main
steps: � � � � � � � �
 � � � � � � � � � � � � � � � ,

� � � � �
 � � � � � �
 � � � �� � � � � and
� � � � �
 �

� � � � 	 � � � �
 . Using the ontologies built in the previous
stage, the first step searches for similarities among
concepts and properties of the source ontology and the
current shared vocabulary. We use the similarity
functions defined on [15,16]. The second step, adding
mapping into the OM, adds the mapping found in the
similarity process to the OM. Finally, in the last step,
adding the new information into the shared vocabulary,
the shared vocabulary is updated with the new classes
and properties only contained in the source ontology.
Thus, the shared vocabulary will make available all the
information the sources ontologies offer.

Our goal is to automate as much as possible of this

process. In this paper, we will focus on the first stage of
our method, building the source ontology, more
specifically in the first step,
 � � � � � � � �
 � � � � � ! � � � � � � �

� � � � � �

 . Currently, almost all information we want to
federate is found on either Web pages or relational
databases. We shall discuss in this paper how to
(semi)automatically build the initial ontology for an
existing relational database.

As for the target language, we have chosen OWL
due to its widespread use in the Semantic Web [3].
Besides, OWL allows formalizing a domain by defining
classes and properties of those classes, to define
individuals asserting properties about them, and to
reason about these classes and individuals to the degree
permitted by the formal semantics of the OWL
language. OWL can be (partially) mapped to a
description logic [2] making possible the use of existing
reasoners such as FACT [13] and RACER [11].

The rest of this paper is organized as follows.
Section 2 discusses the most important languages used
in database modelling, and how easy they are to
translate into OWL. In Section 3 we show the rules to
create the OWL initial ontology using the DDL schema
of an existing relational database. Conclusions and
future work are shown in the last section.

As stated in the previous section, our main goal is to
integrate different sources of information into a
federated system. The first step of our approach is to
build a � � � � � � � � � � � �

 for each data source. This step
is usually performed manually, thus being a tedious,
time-consuming and error-prone task. To avoid these
problems, we want to automate as much as possible this
task. Given that most data sources are databases,
specifically relational databases, we shall focus in this
section in the different modelling languages and how
then can be (semi)automatically translated to an
ontology language.

Relational databases are usually built following
three steps: Define the conceptual model (usually in an
ER diagram); define the logical model (relational
schema); and implement it using DDL (Data Definition
Language) statements of SQL.

This three steps use three different languages (ER,
relational and DDL). Let us see their advantages and
disadvantages with respect to their transformation into
an ontology language (in this paper, we shall consider
OWL as the target language).

� � � � � � � � � 	
 � �
 � � � � � � � � � � � � �
The Entity-Relationship model [7] is a conceptual
model that allows, through the use of ER diagrams, to
describe a particular domain. Being a conceptual model,
it is closer to the “semantic” point of view of the
ontologies than the relational language or the DDL.

However, ER diagrams also have several important
drawbacks. First, it is difficult to parse an ER diagram
to automatically build an ontology, because it is a
graphical representation (however, this could be
overcome, because a graphical ER diagram should be
easy to convert into a set of formal definitions).
Additionally, there are no explicit declarations of data
types (domains of the attributes), and no constraints,
except participation and cardinality of the relationships,
can be reflected in an ER diagram (i.e., no restrictions
like “age is a positive integer” are possible).

� � � � � �
 � �
 � � � �
 � � � � � �
The relational model (RM) [8] has a strong
mathematical foundation. This makes it closer to the
description logic, which is the basis for many ontology
languages, including OWL.

Tables, equivalent to ontology classes, are easily
represented. The main advantage with respect to ER is
that the relational model includes domains for the
attributes.

The main problem of a relational schema to be
converted in an ontology comes from the relationships.
One-to-many (an one-to-one) relationships without
attributes are easily found through foreign keys; if the
foreign key is a subset of the primary key, it is almost
sure that the one-to-many relationships links a weak
entity to a strong one. However, many-to-many
relationships, as well as one-to-many if they include
attributes, are somehow hidden, because they generate
new tables that are apparently identical to “entity”
tables.

Finally, the participation and cardinalities of the
relationships are also difficult to represent.

� � � �
 �
 � � � � � � � � � � �
 � � �
 � �
The advantages and disadvantages of the relational
model generally apply to the Data Definition Language
(DDL), considering a DDL sentence as the
implementation (creation) of a relational table.
However, it is more powerful, since it can add some
expressive power that is not available in the theoretical
RM. For example, attribute domains can be more

explicit, and many types of constraints can be defined,
either via column of table constraints, or using more
complex techniques, such as the use of assertions or
triggers.

Finally, there is a vital factor that affects the ability
of a database model to be used in our system: its
availability. Unfortunately, databases are built in many
cases without much effort on conceptual or logical
modelling, thus the only documentation we can count
on is the DDL of relational schema as implemented in a
particular DBMS. Given that we want to federate
existing databases, we shall use the DDL as the input
language to our method to build an ontology. We leave
as future work to provide the same set of rules to
perform the translation from the ER or RM to OWL.

In the following section we shall see a short
example with an ER diagram and the corresponding
DDL sentences for the creation of the tables, in order to
better understand the transformation rules into OWL.

In this section we will show the automated migration
process based on the SQL/DDL-code used to build an
existing database. By a series of steps we will build an
initial ontology which will be used for integration tasks.
After this initial step, expert users can add more
semantics to the ontology to capture additional
restrictions and semantics about the domain.

The SQL/DDL code will be analyzed in the same
order as the tables have been created. Therefore, tables
without foreign keys are explored first. Each CREATE
TABLE sentence is analyzed to find the table name and
attributes, building the classes and datatype properties
in OWL. If the table has FOREIGN KEY constraints,
we will propose the creation of a series of object
properties and classes which denote the same semantics.
One-to-many, many-to-many and weak-entity
relationships will be taken into account to transform
them into OWL classes, properties and restrictions.
Finally, we shall consider the translation of simple
CHECK constraints and CREATE DOMAIN sentences
into OWL.

� � � � � � � �
 � � � � �
 �
 �
 � �
Figure 2 shows an ER diagram that models museums,
with information about when works of art are shown in
different rooms, about the partners that support a given
museum, and its employees. This minimum example
shows all the different types of entities and relationships
that can be present in an ER diagram: strong and weak
entities (the attributes and keys are omitted for
simplicity), and binary (one-to-many and many-to-
many) and ternary relationships.

The translation of this ER diagram into a relational
model is shown in Table 1. It shows the attributes of
each table, where underlined sets of attributes represent
the primary keys. Additionally, foreign keys (with
referenced tables) are also shown.

We do not show here the full set of SQL/DDL
sentences used to build the entire database. Instead, we

will choose individual sentences in order to show
specific translation rules from SQL to OWL.

SEMESTER

WORK

ROOM

Show

MUSEUM

PARTNER

EMPLOYEE

(1,N)

(1,N)

(1,N)

(1,N)

(0,N)

(1,1)(1,N)(1,1) (1,N)

Supports

� � � � � �

 ER diagram of the example database

� � � � � 	
 � �

 � 	 � � � � � �
� � � � �
 � � � � � � � � � � �

MUSEUM(NAME, ADDRESS)

EMPLOYEE(EMP_ID, NAME,
ADDRESS, MUS_NAME)

MUS_NAME (MUSEUM)

PARTNER(PARTNER_ID, NAME)

SUPPORTS(PARTNER_ID,
MUS_NAME)

PARTNER_ID PARTNER)

MUS_NAME (MUSEUM)

ROOM(MUS_NAME,ROOM_ID) MUS_NAME (MUSEUM)

WORK (WORK_NAME, AUTHOR)

SEMESTER(SEMNO, YEAR)

SHOWS(WORK_NAME, SEMNO,
YEAR, MUS_NAME, ROOM_ID)

WORK_NAME (WORK)

SEMNO, YEAR
(SEMESTER)

MUS_NAME, ROOM_ID
(ROOM)

�
 � � � � �
Relational model of the example database

� � � � � �
 � � � � � � � � � � � � � � �
The source ontology is created by parsing the
SQL/DDL sentences. The sentences are parsed in the
order they are written:

1. Tables without foreign keys
2. Tables with foreign keys. Note that these

tables can come from entities in the ER model
(it is irrelevant whether they correspond to
“weak” entities or not) or from relationships
among entities in the ER model (either many-
to-many, one-to-many with attributes, or with
a degree greater than 2).

As indicated, we first analyze tables without foreign

key constraints, to build the OWL classes and
properties. Following the example, the � � � � � �

 table
can be one of the first tables created. Thus, we have the
sentence:

CREATE TABLE Museum (
 name CHAR(20),
 address CHAR(50) NOT NULL,
 CONSTRAINT PK_MUSEUM
 PRIMARY KEY (name)

);

The � � � � � �
 table contains two attributes but no

foreign key restrictions, so it is just transformed into an
OWL class, and its attributes are dealt with. In this case,
the � � � � � �

 table contains the
� � � � � � � and

� � � �
attributes, that are created in OWL, as DataType
Properties, because they relate instances of classes with
RDF literals and XML Schema DataTypes. These
properties are created as Functional Properties because
they have at most one unique value for each object.
Besides, these properties do not have domain and range
defined because they can be used by other classes.
Therefore, we create the

� � � � � � � � � � � � and
� � � � � � � � �

properties.

Then, these properties must be assigned to the class
with an � � � � � � � � � � � � � � � �

restriction to denote the
specific range. The range of both properties is a string
type. The � � � � � � � � � � � � � � � �

restriction requires that
for every instance of the class that has instances of the
specified property, the property values are all members
of the class indicated by the � � � � � � � � � � � � � � � �

 clause.
In addition, the NOT NULL constraint that affects

the attributes are also taken into account (the
� � � �

attribute implicitly has this constraint because it is a
primary key; the

� � � � � � � attribute contains a NOT
NULL contraint). These constraints are included in the
ontology by assigning a cardinality restriction to the

� � � � � �
 class, since just using a Functional Property

does not express this requirement. Therefore, the OWL-
code to represent the � � � � � �

 table is:

<owl:DatatypeProperty rdf:ID="prop_address">
<rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#
FunctionalProperty"/></owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="prop_museum">
<rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#
FunctionalProperty"/></owl:DatatypeProperty>

<owl:Class rdf:ID="Museum">
<rdfs:subClassOf> <owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty
rdf:about="#prop_address"/>
</owl:onProperty> <owl:allValuesFrom
rdf:resource="http://www.w3.org/2001/XMLSche
ma#string"/>
 </owl:Restriction>
</rdfs:subClassOf>
 <rdfs:subClassOf> <owl:Restriction>
<owl:onProperty>
<owl:DatatypeProperty
rdf:about="#prop_address"/>
</owl:onProperty> <owl:cardinality
rdf:datatype="http://www.w3.org/2001/XMLSche
ma#int">1</owl:cardinality>
</owl:Restriction> </rdfs:subClassOf>
<rdfs:subClassOf> <rdfs:subClassOf>
<owl:Restriction>
 <owl:onProperty>
<owl:DatatypeProperty
rdf:about="#prop_museum_name"/>
</owl:onProperty> <owl:cardinality
rdf:datatype="http://www.w3.org/2001/XMLSche
ma#int">1</owl:cardinality>
 </owl:Restriction>
</rdfs:subClassOf> <rdfs:subClassOf>
<owl:Restriction> <owl:onProperty>
<owl:DatatypeProperty
rdf:about="#prop_museum_name"/>
</owl:onProperty> <owl:allValuesFrom
rdf:resource="http://www.w3.org/2001/XMLSche
ma#string"/> </owl:Restriction>

</rdfs:subClassOf>
</owl:Class>

With this code, we are saying that:
� � � � � � � � � � � � is

a property of � � � � � �
 class, every instance of the � � � � � � � � � � � � property within � � � � � �

class are string
instances, exactly � � �

 of the
� � � � � � � � � � � � properties of

a � � � � � �
must point to an individual that is a string, � � � � � � � � �
 is a property of � � � � � �

 class and exactly
� � �

 of the
� � � � � � � � � � � � � � � �

 properties of a � � � � � �
must point to an individual that is a string.

This process is followed to translate all tables
without foreign keys. When the table has foreign keys,
there are two different cases: when the table has

� � � � � �

one, and when it has two ore more. For the first case,
we shall use the � � � � �
 � �

 table as example. This table
has its own attributes and one FOREIGN KEY
constraint that references � � � � � �

. From the semantic
point of view, this is a one-to-many relationship. The
SQL/DDL sentence is:

CREATE TABLE Employee (
 emp_id INTEGER,
 name CHAR(20),
 address CHAR(20),
 mus_name CHAR(20) NOT NULL,
 CONSTRAINT PK_EMPLOYEE
 PRIMARY KEY (emp_id),
 CONSTRAINT FK_MUSEUM
 FOREIGN KEY(mus_name)
 REFERENCES Museum(name)
);

In OWL, these types of relationships generate the

creation of a set of classes and properties. After creating
the � � � � �
 � �

 class and its attributes as explained above,
we must create the attribute with the FOREIGN KEY
constraint. In order to do so, the � � � � � � � � � �
 � � � � � � � � �

 property is created as a
Functional Object Property. This property contains the

� � � � �
 � �
 class as domain and � � � � � �

 as range. In
order to denote the two roles of the one-to-many
relationship, the inverse of this property is also created.
That is, one property defines in which museum an
employee works (

� � � � � � � � � �
 � � � � � � � � �
 property),

and the inverse defines the employees of the museum
(

�
 � � � � � � � � �
 property). As the

relationship was one-to-many, this last property is not
functional.

Unlike DataType properties used to represent
“common” attributes, properties used to represent
foreign keys have a predefined domain and range, so we
do not need to assign them to the � � � � �
 � �

 and
� � � � � �

 class. In the case of
� � � � � � � � � � � � � � �

property, as the SQL/DDL-code has a NOT NULL
constraint, a cardinality restriction of 1 is also added.
Thus, an employee works on exactly one museum. For �

 property, using the
SLQ/DDL-code it is not possible to know the minimal
cardinality (it would be possible to know if using the
ER diagram, which shows a minimal cardinality of 1).
Thus, the analyst can (and in this case should), after the
ontology is built, add this cardinality, to represent that
every museum has at least one employee.

The relationship between a weak entity and a strong
one is a special case of one-to-many relationship. In
SQL/DDL-code, this relationship appears when the
primary key is compound, and the foreign key is a
subset of this primary key. Following our example, each

� � � �
 of a museum is a weak entity of � � � � � �

. In
OWL, these relationships are defined in a very similar
way as the foreign keys in the example above, but the
cardinality restriction of 1 is always present (because
the foreign key is part of the primary key).

To translate the
� � � �

 table into OWL, two
properties are created: a Functional Datatype Property
(

� � � � � � � � � � � �
) and a Functional Object Property

(
� � � � � � � � � � � � � � � �

).
� � � � � � � � � � � �

 is a Functional Datatype Property
with an � � � � � � � � � � � � � � � �

 restriction and a cardinality
of 1, because the

� � � � � � �
 attribute is part of the

primary key.
For

� � � � � � � � � � � � � � � �
, the domain and range are

defined as
� � � �

and � � � � � �
, respectively, adding also

a cardinality of 1. Again, the inverse of � � � � � � � � � � � � � � � �
 is also defined, because we want

to denote the two roles of the relationship and also to
give the opportunity to the users to include the exact
cardinality of the � � � � � �

 class in the relationship,
given that this cardinality can not be obtained from the
SQL/DDL-code.

When the table has two foreign key constraints, we
have two different situations: when the table comes
from a many-to-many relationship without additional
attributes (the OWL class is not created, just the
relationships) and when it has other attributes (we
create the class and its properties).

Let us consider the first situation. The
� � � � � � � �

table has two foreign keys:

CREATE TABLE Supports (
 partner_id INTEGER,
 mus_name CHAR(20),
 CONSTRAINT PK_SUPPORTS
 PRIMARY KEY(partner_id,

 mus_name),
 CONSTRAINT FK_MUS
 FOREIGN KEY(mus_name)
 REFERENCES Museum(name),
 CONSTRAINT FK_PARTNER
 FOREIGN KEY(partner_id)
 REFERENCES Partner(partner_id)
);

In this case, a property

� � � � � � � � � � � � � � � � � � �
 is

created, defining
� � � � � � �

 as domain and � � � � � �
 as

range; the inverse of this property
(

� �
) is also defined. As

in previous examples, the cardinalities can not be
inferred from the SQL/DDL-code, so they can be later
added by expert users. In this case, � � � � � � � � � � � � � � � � � � �

 does not have any restriction
because there are partners without supported museums,
but

� �
 property must

have the minimal cardinality restriction.
The second situation happens when the table

contains additional attributes. For example, if
� � � � � � � �

had a
� � � �

 attribute. In this case, the
� � � � � � �

 class is
created, as well as its attributes as properties, like in the
previous cases.

When a table contains more than two foreign keys,
it is necessary to create the OWL class, regardless of
whether it has additional attributes or not. This is
because OWL does not allow properties with a degree
greater than 2. In our example the

� � � � � table has three
foreign keys:

CREATE TABLE Shows (
 room_id INTEGER,
 mus_name CHAR(20),
 work_name CHAR(20),
 semester INTEGER,
 year INTEGER,
 CONSTRAINT PK_SHOWS
 PRIMARY KEY(room_id,
 mus_name,
 work_name,
 semester,
 year),
 CONSTRAINT FK_WORK
 FOREIGN KEY(work_name)
 REFERENCES Work(work_name),
 CONSTRAINT FK_MUS2
 FOREIGN KEY(room_id, mus_name)
 REFERENCES Room(room_id,
 mus_name),
 CONSTRAINT FK_SEM
 FOREIGN KEY(semester, year)
 REFERENCES Semester(semester,
 year)
);

In order to represent this situation in OWL, we must

create the
� � � � � class. Then, as in the previous

examples, one property for each foreign key is created,
relating the

� � � � � class with the referenced class. These
properties are Functional Object Properties. Also, we
create the inverses of each of them, as the following
OWL fragment shows.

<owl:FunctionalProperty
rdf:ID="prop_shows_room"> <rdfs:domain
rdf:resource="#Shows"/> <rdfs:range
rdf:resource="#Room"/> <owl:inverseOf
rdf:resource="#inverse_of_prop_shows_room"/>
<rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#
ObjectProperty"/></owl:FunctionalProperty>
<owl:FunctionalProperty
rdf:ID="prop_shows_semester">
<rdfs:domain rdf:resource="#Shows"/>
<rdfs:range rdf:resource="#Semester"/>
 <owl:inverseOf
rdf:resource="#inverse_of_prop_shows_semeste
r"/> <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#
ObjectProperty"/></owl:FunctionalProperty>
<owl:FunctionalProperty
rdf:ID="prop_shows_work"> <rdfs:domain
rdf:resource="#Shows"/>
 <rdfs:range rdf:resource="#Work"/>
 <owl:inverseOf
rdf:resource="#inverse_of_prop_shows_work"/>
 <rdf:type
rdf:resource="http://www.w3.org/2002/07/owl#
ObjectProperty"/></owl:FunctionalProperty>

The cardinality equal to 1 restriction for the three
properties must be added in the

� � � � � class because
they are primary keys. Again, the cardinality restrictions

in the
� � � �

,
� � � �

 and
� � � � � � � �

 classes can not be
obtained from the SQL/DDL-code. Therefore, the users
must add them when it is necessary.

�
 � � � �
 � � � � �
 � � �
Besides the CREATE TABLE sentences, it is usual to
find in the DDL schema of a database other constructs
that could be of use to implement the source ontology.
Among these, we find simple CHECK constraints
(inside CREATE TABLE statements) and CREATE
DOMAIN sentences.

These statements can be included in the ontology by
creating classes to represent the domains. For example,
the

� � � �
 table can have a CHECK restriction in which

the authors must begin with the ‘A’ letter:

CREATE TABLE Work (
 work_name CHAR(20),
 author CHAR(20),
 CHECK (author LIKE 'A% ')
);

This restriction can be represented in OWL by

creating the
	 �
 � � � � �
 � � � � � � �

 class which denotes the
strings values which begin with the ‘A’ letter. Also, the � � � � � � � � � � �

 property is created to represent the
� � � � � �

attribute.

<owl:Class rdf:ID="Work">
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty>
<owl:ObjectProperty
rdf:about="#prop_author"/>
</owl:onProperty>
<owl:allValuesFrom> <owl:Class
rdf:ID="beginning_with_A"/>
</owl:allValuesFrom>
</owl:Restriction>
</rdfs:subClassOf></owl:Class>

Enumerated data types can be easily created by
using the � � � � � � � � constructor. CREATE DOMAIN
sentences are translated in a similar way as check
constraints, because we also create new class to denote
the constraint. Later, the class properties that
correspond to attributes of this domain are attached to
the domain class.

We have briefly described an integration method
which serves as a guide to integrate a new data source
into a federation system. In this paper, we only consider
relational databases as the data sources to be federated.
After analyzing the advantages and disadvantages of the
three languages that can be used to describe a relational
database (ER diagram, relational schema, and DDL
statements of SQL), we have chosen SQL/DDL because
of its expressivity and mainly because it is always
available. In this paper we have later focused on the
first step of the method,
 � � � � � � � �
 � � � � � ! � � � � � � �

� � � � � �

 , specifying a set of rules to transform the
tables of the relational schema into an OWL ontology.

One-to-many, many-to-many, weak-entity and ternary
relationships have been taken into account to build this
ontology.

As a future work, we plan to add other more
complex constraints specified in SQL in order to obtain
all possible information of the relational databases, such
as more complex CREATE DOMAIN sentences or
CHECK constraints, or even triggers. Also, it is our
intention to define this set of transformation rules for
other languages, such as ER diagrams or UML class
diagrams.

1. Antoniou, G., Harmelen F. Web Ontology Language:
OWL. Handbook on Ontologies in Information Systems.
Staab & Studer Editors. Springer-Verlag, 2003.

2. Baader, F., Calvanese, D., McGuiness, D., Nardi, D. and
Patel-Schneider, P. editors. The Description Logic
Handbook - Theory, Implementation and Applications.
Cambridge University Press, ISBN 0-521-78176-0, 2003.

3. Berners-Lee, T. � � � � � � 	
 � � � � � . Texere Publishing Ltd.
ISBN: 0752820907. June 2001.

4. Buccella A., Cechich A. and Brisaboa N.R. An Ontology
Approach to Data Integration. Journal of Computer
Science and Technology. Vol.3(2). Available at
http://journal.info.unlp.edu.ar/default.html, 2003, (pp. 62-
68).

5. Buccella A., Cechich A. and Brisaboa N.R. An
Ontological Approach to Federated Data Integration. 9°
Congreso Argentino en Ciencias de la Computación,
CACIC’2003, La Plata, October 6-10, 2003, (pp. 905-
916)..

6. Buccella A., Cechich A. and Brisaboa N.R. A Context-
Based Ontology Approach to Solve Explanation
Mismatches. Jornadas Chilenas de Computación. JCC
2003. Chillán, Chile, November 3-9, 2003.

7. Chen, P. The Entity-Relation model- Toward a unified
view of data.
 � � � � � � � � �
 � � � � � � �
 � � � � � � � �
 � � � ,
Vol.1(1), March 1976, (pp. 9-36).

8. Codd, E. A Relational Model of Data for Large Shared
Data Banks. � � � � � � � � �
 � � � � � �
 � �
 � � , Vol.13(6),
1970, (pp. 377-387).

9. Euzenat, J., Valtchev, P. An integrative proximity
measure for ontology alignment. CEUR Workshop
Proceedings. Sanibel Island, Florida, October 20, 2003.

10. Gennari, J., Musen, M. A., Fergerson, R. W., Grosso, W.
E., Crubézy, M., Eriksson, H., Noy, N. F., Tu, S. W. The
Evolution of Protégé: An Environment for Knowledge-
Based Systems Development. Technical Report, SMI-
2002-0943, 2002.

11. Haarslev, V. and Moller, R. RACER system description.
In P. Lambrix, A. Borgida, M. Lenzerini, R. Moller, and
P. Patel-Schneider, editors, Proceedings of the
International Workshop on Description Logics, number 22
in CEUR-WS, Linkoeping, Sweden, July 30-August 1
1999, (pp. 140-141).

12. Hasselbring, W. Information System Integration.
Communications of the ACM. June 2000.

13. Horrocks, I. The FaCT system. In H. de Swart, editor,
Automated Reasoning with Analytic Tableaux and
Related Methods: International Conference Tableaux'98,
number 1397 in Lecture Notes in Artificial Intelligence,
pages 307--312. SpringerVerlag, Berlin, May 1998.

14. Maedche, A. and Staab, S. Measuring Similarity between
Ontologies. In: Proc. Of the European Conference on
Knowledge Acquisition and Management - EKAW-2002.

Madrid, Spain, October 1-4, 2002. LNCS/LNAI 2473,
Springer, 2002, (pp. 251-263)..

15. Rodriguez, A., Egenhofer, M. Determining Semantic
Similarity among Entity Classes from Different
Ontologies. IEEE Transactions on Knowledge and Data
Engineering, vol. 15, no. 2, March/April 2003.

16. Rodriguez, A., Egenhofer, M. Putting Similarity
Assessments into Context: Matching Functions with the
User’s Intended Operations. Context 99, Lecture Notes in
Computer Science, Springer-Verlag, September 1999.

17. Smith, M.K.,Welty, C., McGuinness, D.L. OWL Web
Ontology Language Guide. W3C,
http://www.w3.org/TR/2004/REC-owl-guide-20040210/.
10 February 2004.

18. Visser, P., Jones, D., Bench-Capon, T., Shave, M. An
Analysis of Ontology Mismatches; Heterogeneity versus
Interoperability. AAAI 1997 Spring Symposium on
Ontological Engineering.

19. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H..
Schuster, G., Neumann, H. and Hübner, S. "Ontology-
based Integration of Information - A Survey of Existing
Approaches," In: Proceedings of IJCAI-01 Workshop:
Ontologies and Information Sharing, Seattle, WA, Vol.
(Pages 108-117). 2001.

