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The use of ontologies and ontology languages 
like OWL has attracted much attention, mainly 
in the Semantic Web and the information 
integration research fields. We have addressed 
the latter issue, proposing an architecture and a 
method, based on the use of ontologies, to 
integrate several sources of information, 
possibly of different natures, into a federated 
system. In this paper, we address the first step 
of our integration method: to automatically 
build an initial ontology from an existing 
database that is to be integrated in the 
federation. We show a procedure that takes as 
input the relational schema (the SQL “create 
table” sentences) of an existing database and, 
following a set of rules, transforms it into an 
OWL ontology. The initial ontology can be 
later modified or extended, if more semantic 
knowledge about the domain is needed 

The federation of different data sources is a long-
standing and thoroughly studied problem. Since the 
appearance of the ontologies and the proliferation of the � � � � � � � � � � 	

, this problem has regained much 
attention. 

The autonomy of the information sources, their 
geographical distribution and the heterogeneity among 
them, are the main problems we must face to perform 
the integration [12]. The semantic heterogeneity has 
been one of the most researched aspects in the last 
years. Works like [9,14] are aimed to fill the semantic 
gap among the information sources, using the semantic 
information provided by the ontologies.  

In recent works [4,5,6] we have proposed an 
architecture and a method to solve semantic 
heterogeneity problems [18]. Figure 1 shows a part of 
the architecture of our federation system, which is based 
on a hybrid ontology approach [19]. As we can see, the 
architecture is composed of a 
 � � 	 � � � � � � � � 
 
  or � � � � � �

� � � � 	 � � � � 
  containing the generic concepts that will be 
used to query the system, and one � � � � � � � � � � � � 
 
  for 

each data source. The � � � � � � 
 
 � � � � � � 
 � � � �
component deals with the information flow between the 
source ontologies and the shared vocabulary. Once the 
user chooses the concepts from the global ontology and 
makes the query, the system will use the OM to know 
the related concepts on each information source. The 

� � � � � � � � � � � � 
 � � �  are used for this purpose, given that 
they provide the specific terminology for the 
information sources and the means to obtain the desired 
data.  

 � � � � � �
 A part of our integration system 

The method we propose to add a new data source to 
an existing federation consists of two main stages: 	 � � � � � � 
 � � � � � � � � � � � � � � � 
 
  and 

	 � � � � � � 
 � � � � � � � � � 
 �	 � � � � � � � � � � � � � � � � � � � � � 
 
 � � � � � � � � � � � �
� � � � 	 � � � � 
 . These stages are briefly explained below. 
See [5,6] for a full explanation. 

� � � � � � � 
 � � � � � � � � � � � � � � � 
 
   This stage takes as input 
a data source and its result is an OWL ontology [17,1] 
for the data source. It contains two main steps: 


 � � � � � � � � 
 � � � � � ! � � � � � � � � � � � � � 
 
 " and
� � � � � 


� � � � � � � � � . The first step, building an initial ontology 
from the source, is the aim of this paper, and will be 
described in the following sections. The second stage, � � � � � 
 � � � � � � � � � , allows the expert user (for example, 
using an ontology editor as Protégé [10] with the OWL 
plug-in) to add restrictions, classes and/or properties to 
the initial ontology. Knowing the domain of the 



information source and understanding the structures, the 
user is able to provide more semantics to the ontology. 

� � � � � � � 
 � � � � � � � � � 
 � 	 � � � � � � � � � � � � � � � � � � � � � 
 
 � � �
� � � � � � � � � � � � � 	 � � � � 
 : This stage contains three main 
steps: � � � � � � � � 
 � � � � � � � � � � � � � � � , 

� � � � � 
 � � � � � � 
 � � � �� � � � �  and 
� � � � � 
 � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � 	 � � � � 
 . Using the ontologies built in the previous 
stage, the first step searches for similarities among 
concepts and properties of the source ontology and the 
current shared vocabulary. We use the similarity 
functions defined on [15,16]. The second step, adding 
mapping into the OM, adds the mapping found in the 
similarity process to the OM. Finally, in the last step, 
adding the new information into the shared vocabulary, 
the shared vocabulary is updated with the new classes 
and properties only contained in the source ontology. 
Thus, the shared vocabulary will make available all the 
information the sources ontologies offer. 

 
Our goal is to automate as much as possible of this 

process. In this paper, we will focus on the first stage of 
our method, building the source ontology, more 
specifically in the first step, 
 � � � � � � � � 
 � � � � � ! � � � � � � �

� � � � � � 
 
 . Currently, almost all information we want to 
federate is found on either Web pages or relational 
databases. We shall discuss in this paper how to 
(semi)automatically build the initial ontology for an 
existing relational database. 

As for the target language, we have chosen OWL 
due to its widespread use in the Semantic Web [3]. 
Besides, OWL allows formalizing a domain by defining 
classes and properties of those classes, to define 
individuals asserting properties about them, and to 
reason about these classes and individuals to the degree 
permitted by the formal semantics of the OWL 
language. OWL can be (partially) mapped to a 
description logic [2] making possible the use of existing 
reasoners such as FACT [13] and RACER [11]. 

The rest of this paper is organized as follows. 
Section 2 discusses the most important languages used 
in database modelling, and how easy they are to 
translate into OWL. In Section 3 we show the rules to 
create the OWL initial ontology using the DDL schema 
of an existing relational database. Conclusions and 
future work are shown in the last section. 

As stated in the previous section, our main goal is to 
integrate different sources of information into a 
federated system. The first step of our approach is to 
build a � � � � � � � � � � � � 
 
  for each data source. This step 
is usually performed manually, thus being a tedious, 
time-consuming and error-prone task. To avoid these 
problems, we want to automate as much as possible this 
task. Given that most data sources are databases, 
specifically relational databases, we shall focus in this 
section in the different modelling languages and how 
then can be (semi)automatically translated to an 
ontology language. 

Relational databases are usually built following 
three steps: Define the conceptual model (usually in an 
ER diagram); define the logical model (relational 
schema); and implement it using DDL (Data Definition 
Language) statements of SQL. 

This three steps use three different languages (ER, 
relational and DDL). Let us see their advantages and 
disadvantages with respect to their transformation into 
an ontology language (in this paper, we shall consider 
OWL as the target language). 

� � � � � � � � � 	 
 � � 
 � � � � � � � � � � � � �
The Entity-Relationship model [7] is a conceptual 
model that allows, through the use of ER diagrams, to 
describe a particular domain. Being a conceptual model, 
it is closer to the “semantic” point of view of the 
ontologies than the relational language or the DDL.  

However, ER diagrams also have several important 
drawbacks. First, it is difficult to parse an ER diagram 
to automatically build an ontology, because it is a 
graphical representation (however, this could be 
overcome, because a graphical ER diagram should be 
easy to convert into a set of formal definitions). 
Additionally, there are no explicit declarations of data 
types (domains of the attributes), and no constraints, 
except participation and cardinality of the relationships, 
can be reflected in an ER diagram (i.e., no restrictions 
like “age is a positive integer” are possible). 

� � � � � � 
 � � 
 � � � � 
 � � � � � �
The relational model (RM) [8] has a strong 
mathematical foundation. This makes it closer to the 
description logic, which is the basis for many ontology 
languages, including OWL.  

Tables, equivalent to ontology classes, are easily 
represented. The main advantage with respect to ER is 
that the relational model includes domains for the 
attributes.  

The main problem of a relational schema to be 
converted in an ontology comes from the relationships. 
One-to-many (an one-to-one) relationships without 
attributes are easily found through foreign keys; if the 
foreign key is a subset of the primary key, it is almost 
sure that the one-to-many relationships links a weak 
entity to a strong one. However, many-to-many 
relationships, as well as one-to-many if they include 
attributes, are somehow hidden, because they generate 
new tables that are apparently identical to “entity” 
tables.  

Finally, the participation and cardinalities of the 
relationships are also difficult to represent. 

� � � � 
 � 
 � � � � � � � � � � � 
 � � � 
 � �
The advantages and disadvantages of the relational 
model generally apply to the Data Definition Language 
(DDL), considering a DDL sentence as the 
implementation (creation) of a relational table. 
However, it is more powerful, since it can add some 
expressive power that is not available in the theoretical 
RM. For example, attribute domains can be more 



explicit, and many types of constraints can be defined, 
either via column of table constraints, or using more 
complex techniques, such as the use of assertions or 
triggers.  

Finally, there is a vital factor that affects the ability 
of a database model to be used in our system: its 
availability. Unfortunately, databases are built in many 
cases without much effort on conceptual or logical 
modelling, thus the only documentation we can count 
on is the DDL of relational schema as implemented in a 
particular DBMS. Given that we want to federate 
existing databases, we shall use the DDL as the input 
language to our method to build an ontology. We leave 
as future work to provide the same set of rules to 
perform the translation from the ER or RM to OWL. 

In the following section we shall see a short 
example with an ER diagram and the corresponding 
DDL sentences for the creation of the tables, in order to 
better understand the transformation rules into OWL. 

In this section we will show the automated migration 
process based on the SQL/DDL-code used to build an 
existing database. By a series of steps we will build an 
initial ontology which will be used for integration tasks. 
After this initial step, expert users can add more 
semantics to the ontology to capture additional 
restrictions and semantics about the domain. 

The SQL/DDL code will be analyzed in the same 
order as the tables have been created. Therefore, tables 
without foreign keys are explored first. Each CREATE 
TABLE sentence is analyzed to find the table name and 
attributes, building the classes and datatype properties 
in OWL. If the table has FOREIGN KEY constraints, 
we will propose the creation of a series of object 
properties and classes which denote the same semantics. 
One-to-many, many-to-many and weak-entity 
relationships will be taken into account to transform 
them into OWL classes, properties and restrictions. 
Finally, we shall consider the translation of simple 
CHECK constraints and CREATE DOMAIN sentences 
into OWL. 

� � � � � � � � 
 � � � � � 
 � 
 � 
 � �
Figure 2 shows an ER diagram that models museums, 
with information about when works of art are shown in 
different rooms, about the partners that support a given 
museum, and its employees. This minimum example 
shows all the different types of entities and relationships 
that can be present in an ER diagram: strong and weak 
entities (the attributes and keys are omitted for 
simplicity), and binary (one-to-many and many-to-
many) and ternary relationships. 

The translation of this ER diagram into a relational 
model is shown in Table 1. It shows the attributes of 
each table, where underlined sets of attributes represent 
the primary keys. Additionally, foreign keys (with 
referenced tables) are also shown. 

We do not show here the full set of SQL/DDL 
sentences used to build the entire database. Instead, we 

will choose individual sentences in order to show 
specific translation rules from SQL to OWL. 
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(1,1)(1,N)(1,1) (1,N)

Supports

 
� � � � � �

 ER diagram of the example database 

� � � � � 	 
 � � 
 
 � 	 � � � � � �
� � � � � 
 � � � � � � � � � � �

MUSEUM(NAME, ADDRESS)  

EMPLOYEE(EMP_ID, NAME, 
ADDRESS, MUS_NAME) 

MUS_NAME (MUSEUM) 

PARTNER(PARTNER_ID, NAME)  

SUPPORTS(PARTNER_ID, 
MUS_NAME) 

PARTNER_ID PARTNER) 

MUS_NAME (MUSEUM) 

ROOM(MUS_NAME,ROOM_ID) MUS_NAME (MUSEUM) 

WORK (WORK_NAME, AUTHOR)  

SEMESTER(SEMNO, YEAR)  

SHOWS(WORK_NAME, SEMNO, 
YEAR, MUS_NAME, ROOM_ID) 

WORK_NAME (WORK) 

SEMNO, YEAR 
(SEMESTER) 

MUS_NAME, ROOM_ID 
(ROOM) 

� 
 � � � � �
Relational model of the example database

� � � � � � 
 � � � � � � � � � � � � � � �
The source ontology is created by parsing the 
SQL/DDL sentences. The sentences are parsed in the 
order they are written: 

1. Tables without foreign keys 
2. Tables with foreign keys. Note that these 

tables can come from entities in the ER model 
(it is irrelevant whether they correspond to 
“weak” entities or not) or from relationships 
among entities in the ER model (either many-
to-many, one-to-many with attributes, or with 
a degree greater than 2). 

 
As indicated, we first analyze tables without foreign 

key constraints, to build the OWL classes and 
properties. Following the example, the � � � � � �

 table 
can be one of the first tables created. Thus, we have the 
sentence: 

 
CREATE TABLE Museum ( 
 name CHAR(20),  
 address CHAR(50) NOT NULL, 
 CONSTRAINT PK_MUSEUM 
  PRIMARY KEY (name) 

); 



The � � � � � �
 table contains two attributes but no 

foreign key restrictions, so it is just transformed into an 
OWL class, and its attributes are dealt with. In this case, 
the � � � � � �

 table contains the 
� � � � � � � and

� � � �
attributes, that are created in OWL, as DataType 
Properties, because they relate instances of classes with 
RDF literals and XML Schema DataTypes. These 
properties are created as Functional Properties because 
they have at most one unique value for each object. 
Besides, these properties do not have domain and range 
defined because they can be used by other classes. 
Therefore, we create the 

� � � � � � � � � � � �  and 
� � � � � � � � �

 
properties.  

Then, these properties must be assigned to the class 
with an � � �  � � � � � � � � � � � � �

restriction to denote the 
specific range. The range of both properties is a string 
type. The � � �  � � � � � � � � � � � � �

restriction requires that 
for every instance of the class that has instances of the 
specified property, the property values are all members 
of the class indicated by the � � �  � � � � � � � � � � � � �

 clause. 
In addition, the NOT NULL constraint that affects 

the attributes are also taken into account (the 
� � � �

 
attribute implicitly has this constraint because it is a 
primary key; the 

� � � � � � �  attribute contains a NOT 
NULL contraint). These constraints are included in the 
ontology by assigning a cardinality restriction to the 

� � � � � �
 class, since just using a Functional Property 

does not express this requirement. Therefore, the OWL-
code to represent the � � � � � �

 table is: 

 

<owl:DatatypeProperty rdf:ID="prop_address">    
<rdf:type 
rdf:resource="http://www.w3.org/2002/07/owl#
FunctionalProperty"/></owl:DatatypeProperty> 
<owl:DatatypeProperty rdf:ID="prop_museum">    
<rdf:type 
rdf:resource="http://www.w3.org/2002/07/owl#
FunctionalProperty"/></owl:DatatypeProperty> 
 
<owl:Class rdf:ID="Museum">    
<rdfs:subClassOf>      <owl:Restriction>        
<owl:onProperty>          
<owl:DatatypeProperty 
rdf:about="#prop_address"/>        
</owl:onProperty>        <owl:allValuesFrom 
rdf:resource="http://www.w3.org/2001/XMLSche
ma#string"/> 
      </owl:Restriction>    
</rdfs:subClassOf> 
    <rdfs:subClassOf>      <owl:Restriction>        
<owl:onProperty>          
<owl:DatatypeProperty 
rdf:about="#prop_address"/>        
</owl:onProperty>        <owl:cardinality 
rdf:datatype="http://www.w3.org/2001/XMLSche
ma#int">1</owl:cardinality>      
</owl:Restriction>    </rdfs:subClassOf>    
<rdfs:subClassOf>    <rdfs:subClassOf>      
<owl:Restriction> 
        <owl:onProperty>          
<owl:DatatypeProperty 
rdf:about="#prop_museum_name"/>        
</owl:onProperty>        <owl:cardinality 
rdf:datatype="http://www.w3.org/2001/XMLSche
ma#int">1</owl:cardinality> 
      </owl:Restriction>    
</rdfs:subClassOf>    <rdfs:subClassOf>      
<owl:Restriction>        <owl:onProperty>          
<owl:DatatypeProperty 
rdf:about="#prop_museum_name"/>        
</owl:onProperty>        <owl:allValuesFrom 
rdf:resource="http://www.w3.org/2001/XMLSche
ma#string"/>      </owl:Restriction>    

</rdfs:subClassOf> 
</owl:Class> 

With this code, we are saying that: 
� � � � � � � � � � � �  is 

a property of � � � � � �
 class, every instance of the � � � � � � � � � � � �  property within � � � � � �

class are string 
instances, exactly � � �

 of the 
� � � � � � � � � � � �  properties of 

a � � � � � �
must point to an individual that is a string, � � � � � � � � �
 is a property of � � � � � �

 class and exactly 
� � �

 of the 
� � � � � � � � � � � � � � � �

 properties of a � � � � � �
must point to an individual that is a string. 

This process is followed to translate all tables 
without foreign keys. When the table has foreign keys, 
there are two different cases: when the table has 

� � � � � � 
  
one, and when it has two ore more. For the first case, 
we shall use the � � � � � 
 � �

 table as example. This table 
has its own attributes and one FOREIGN KEY 
constraint that references � � � � � �

. From the semantic 
point of view, this is a one-to-many relationship. The 
SQL/DDL sentence is: 

 
CREATE TABLE Employee ( 
 emp_id INTEGER,  
 name CHAR(20),  
 address CHAR(20),  
 mus_name CHAR(20) NOT NULL, 
 CONSTRAINT PK_EMPLOYEE 
  PRIMARY KEY (emp_id), 
 CONSTRAINT FK_MUSEUM 
  FOREIGN KEY(mus_name) 
  REFERENCES Museum(name) 
); 
 
In OWL, these types of relationships generate the 

creation of a set of classes and properties. After creating 
the � � � � � 
 � �

 class and its attributes as explained above, 
we must create the attribute with the FOREIGN KEY 
constraint. In order to do so, the � � � � � � � � � � 
 � � � � � � � � �

 property is created as a 
Functional Object Property. This property contains the 

� � � � � 
 � �
 class as domain and � � � � � �

 as range. In 
order to denote the two roles of the one-to-many 
relationship, the inverse of this property is also created. 
That is, one property defines in which museum an 
employee works (

� � � � � � � � � � 
 � � � � � � � � �
 property), 

and the inverse defines the employees of the museum 
(

� � � � � � � � � � � � � � � � � � � � � 
 � � � � � � � � �
 property). As the 

relationship was one-to-many, this last property is not 
functional. 

Unlike DataType properties used to represent 
“common” attributes, properties used to represent 
foreign keys have a predefined domain and range, so we 
do not need to assign them to the � � � � � 
 � �

 and 
� � � � � �

 class. In the case of 
� � � � � � � � � � � � � � �

 
property, as the SQL/DDL-code has a NOT NULL 
constraint, a cardinality restriction of 1 is also added. 
Thus, an employee works on exactly one museum. For � � � � � � � � � � � � � � � � � � � � � � � � � �

 property, using the 
SLQ/DDL-code it is not possible to know the minimal 
cardinality (it would be possible to know if using the 
ER diagram, which shows a minimal cardinality of 1). 
Thus, the analyst can (and in this case should), after the 
ontology is built, add this cardinality, to represent that 
every museum has at least one employee. 



The relationship between a weak entity and a strong 
one is a special case of one-to-many relationship. In 
SQL/DDL-code, this relationship appears when the 
primary key is compound, and the foreign key is a 
subset of this primary key. Following our example, each 

� � � �
 of a museum is a weak entity of � � � � � �

. In 
OWL, these relationships are defined in a very similar 
way as the foreign keys in the example above, but the 
cardinality restriction of 1 is always present (because 
the foreign key is part of the primary key).  

To translate the 
� � � �

 table into OWL, two 
properties are created: a Functional Datatype Property 
(

� � � � � � � � � � � �
) and a Functional Object Property 

(
� � � � � � � � � � � � � � � �

).  
� � � � � � � � � � � �

 is a Functional Datatype Property 
with an � � �  � � � � � � � � � � � � �

 restriction and a cardinality 
of 1, because the 

� � � � � � �
 attribute is part of the 

primary key.  
For 

� � � � � � � � � � � � � � � �
, the domain and range are 

defined as 
� � � �

and � � � � � �
, respectively, adding also 

a cardinality of 1. Again, the inverse of � � � � � � � � � � � � � � � �
 is also defined, because we want 

to denote the two roles of the relationship and also to 
give the opportunity to the users to include the exact 
cardinality of the � � � � � �

 class in the relationship, 
given that this cardinality can not be obtained from the 
SQL/DDL-code. 

When the table has two foreign key constraints, we 
have two different situations: when the table comes 
from a many-to-many relationship without additional 
attributes (the OWL class is not created, just the 
relationships) and when it has other attributes (we 
create the class and its properties). 

Let us consider the first situation. The 
� � � � � � � �  

table has two foreign keys: 
 

CREATE TABLE Supports ( 
 partner_id INTEGER,  
 mus_name CHAR(20),  
 CONSTRAINT PK_SUPPORTS 
  PRIMARY KEY( partner_id, 

       mus_name),  
 CONSTRAINT FK_MUS 
  FOREIGN KEY(mus_name) 
  REFERENCES Museum(name),  
 CONSTRAINT FK_PARTNER 
  FOREIGN KEY(partner_id) 
  REFERENCES Partner(partner_id) 
); 
 
 
In this case, a property 

� � � � � � � � � � � � � � � � � � �
 is 

created, defining 
� � � � � � �

 as domain and � � � � � �
 as 

range; the inverse of this property 
(

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
) is also defined. As 

in previous examples, the cardinalities can not be 
inferred from the SQL/DDL-code, so they can be later 
added by expert users. In this case, � � � � � � � � � � � � � � � � � � �

 does not have any restriction 
because there are partners without supported museums, 
but 

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
 property must 

have the minimal cardinality restriction. 
The second situation happens when the table 

contains additional attributes. For example, if 
� � � � � � � �  

had a 
� � � �

 attribute. In this case, the 
� � � � � � �

 class is 
created, as well as its attributes as properties, like in the 
previous cases. 

When a table contains more than two foreign keys, 
it is necessary to create the OWL class, regardless of 
whether it has additional attributes or not. This is 
because OWL does not allow properties with a degree 
greater than 2. In our example the 

� � � � �  table has three 
foreign keys: 

 
CREATE TABLE Shows ( 
 room_id INTEGER, 
 mus_name CHAR(20), 
 work_name CHAR(20), 
 semester INTEGER, 
 year INTEGER, 
 CONSTRAINT PK_SHOWS 
  PRIMARY KEY( room_id, 
        mus_name,  
        work_name, 
        semester,  
        year), 
 CONSTRAINT FK_WORK 
  FOREIGN KEY(work_name)  
  REFERENCES Work(work_name), 
 CONSTRAINT FK_MUS2 
  FOREIGN KEY(room_id, mus_name) 
  REFERENCES Room(room_id, 
         mus_name), 
 CONSTRAINT FK_SEM 
  FOREIGN KEY(semester, year) 
  REFERENCES Semester(semester, 
         year) 
); 
 
In order to represent this situation in OWL, we must 

create the 
� � � � �  class. Then, as in the previous 

examples, one property for each foreign key is created, 
relating the 

� � � � �  class with the referenced class. These 
properties are Functional Object Properties. Also, we 
create the inverses of each of them, as the following 
OWL fragment shows. 

 

<owl:FunctionalProperty 
rdf:ID="prop_shows_room">    <rdfs:domain 
rdf:resource="#Shows"/>    <rdfs:range 
rdf:resource="#Room"/>    <owl:inverseOf 
rdf:resource="#inverse_of_prop_shows_room"/>    
<rdf:type 
rdf:resource="http://www.w3.org/2002/07/owl#
ObjectProperty"/></owl:FunctionalProperty> 
<owl:FunctionalProperty 
rdf:ID="prop_shows_semester">    
<rdfs:domain rdf:resource="#Shows"/>    
<rdfs:range rdf:resource="#Semester"/> 
    <owl:inverseOf 
rdf:resource="#inverse_of_prop_shows_semeste
r"/>    <rdf:type 
rdf:resource="http://www.w3.org/2002/07/owl#
ObjectProperty"/></owl:FunctionalProperty> 
<owl:FunctionalProperty 
rdf:ID="prop_shows_work">    <rdfs:domain 
rdf:resource="#Shows"/> 
    <rdfs:range rdf:resource="#Work"/> 
    <owl:inverseOf 
rdf:resource="#inverse_of_prop_shows_work"/> 
    <rdf:type 
rdf:resource="http://www.w3.org/2002/07/owl#
ObjectProperty"/></owl:FunctionalProperty> 

 

The cardinality equal to 1 restriction for the three 
properties must be added in the 

� � � � �  class because 
they are primary keys. Again, the cardinality restrictions 



in the 
� � � �

, 
� � � �

 and 
� � � � � � � �

 classes can not be 
obtained from the SQL/DDL-code. Therefore, the users 
must add them when it is necessary.  

� � � � � � � � � � � � � � � � � � � � 
 � � � � 
 � � � � � 
 � � �
Besides the CREATE TABLE sentences, it is usual to 
find in the DDL schema of a database other constructs 
that could be of use to implement the source ontology. 
Among these, we find simple CHECK constraints 
(inside CREATE TABLE statements) and CREATE 
DOMAIN sentences.  

These statements can be included in the ontology by 
creating classes to represent the domains. For example, 
the 

� � � �
 table can have a CHECK restriction in which 

the authors must begin with the ‘A’ letter: 
 
CREATE TABLE Work ( 
 work_name CHAR(20),  
 author CHAR(20),  
 CHECK (author LIKE 'A% ') 
); 
 
This restriction can be represented in OWL by 

creating the 
	 � 
 � � � � � 
 � � � � � � �

 class which denotes the 
strings values which begin with the ‘A’ letter. Also, the � � � � � � � � � � �

 property is created to represent the 
� � � � � �

 
attribute. 

<owl:Class rdf:ID="Work">    
<rdfs:subClassOf>      
<owl:Restriction>        
<owl:onProperty>          
<owl:ObjectProperty 
rdf:about="#prop_author"/>        
</owl:onProperty>        
<owl:allValuesFrom>          <owl:Class 
rdf:ID="beginning_with_A"/>        
</owl:allValuesFrom>      
</owl:Restriction>    
</rdfs:subClassOf></owl:Class> 

Enumerated data types can be easily created by 
using the � � �  � � � � �  constructor.  CREATE DOMAIN 
sentences are translated in a similar way as check 
constraints, because we also create new class to denote 
the constraint. Later, the class properties that 
correspond to attributes of this domain are attached to 
the domain class. 

 

We have briefly described an integration method 
which serves as a guide to integrate a new data source 
into a federation system. In this paper, we only consider 
relational databases as the data sources to be federated. 
After analyzing the advantages and disadvantages of the 
three languages that can be used to describe a relational 
database (ER diagram, relational schema, and DDL 
statements of SQL), we have chosen SQL/DDL because 
of its expressivity and mainly because it is always 
available. In this paper we have later focused on the 
first step of the method, 
 � � � � � � � � 
 � � � � � ! � � � � � � �

� � � � � � 
 
 , specifying a set of rules to transform the 
tables of the relational schema into an OWL ontology. 

One-to-many, many-to-many, weak-entity and ternary 
relationships have been taken into account to build this 
ontology. 

As a future work, we plan to add other more 
complex constraints specified in SQL in order to obtain 
all possible information of the relational databases, such 
as more complex CREATE DOMAIN sentences or 
CHECK constraints, or even triggers. Also, it is our 
intention to define this set of transformation rules for 
other languages, such as ER diagrams or UML class 
diagrams. 
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