Supporting regular expressions in queries to
distributed XML documents

(© Dmitry Barashev

University of St. Petersburg, Russia
db2@acm.org

Abstract

XML data are often distributed over the
heterogeneous networks. The modern tech-
nologies like Web services allow to build
a distributed virtual document spread over
cooperating network nodes. The goal of
this research is to provide regular expression
search facilities in such documents. Con-
struction of a network model of a distributed
XML document and a process of queries
evaluation are described.

1 Introduction

Evolution of XML [17] related technologies increas-
ingly opens the new levels of applications develop-
ment. A flexibility of semistructured nature of XML,
rich schema definition facilities [15] supported by the
numerous world accepted XML applications, ease of
XML document transformations [16], provide a good
environment for development of flexible cooperating
applications. The appearance of Web services [10]
was a great step towards rapid building of appli-
cations able to work both in intranet and internet
environments.

Applications dealing with XML data usually need
to store XML documents in databases like any other
data. They also would like to query stored docu-
ments using one of the XML query languages like
XPath [18] or XQuery [19]. Modern database sys-
tems support various XML storage and querying op-
tions. The industrial relational DBMSs feature de-
composition of XML documents into a set of rela-
tional tables, storage of XML documents as LOBs,
exposition of relational data in the XML format
and SQL language extensions which enable query-
ing XML data [6, 9, 12]. Querying facilities are also
implemented in so called “native” XML databases
which store XML data using some proprietary stor-
age techniques [1].

Efficient evaluation of queries of the locally stored
XML data has been a hot research topic over the
last several years. A number of papers investigate
opportunities of relational databases to store XML
documents [3, 13]. Significant efforts have been also
dedicated to development of native XML databases

Proceedings of the 5" Russian Conference on Digital
Libraries RCDL2003, St.-Petersburg, Russia, 2003

[8]. During the last two years, several papers intro-
duced numerous indexing schemes based on the well
known secondary index structures [7, 5, 2].

However, the growth of distributed XML data
is a new challenge for database community. Per-
haps, very soon the data exposed by various Web
services running on different software and hardware
platforms ranging from high-end servers to mobile
devices will be considered as a virtual distributed
XML document which also needs to be searched and
queried efficiently.

Evaluation of the queries to the distributed
semistructured data has some specifics which make
traditional indexing and query evaluation techniques
relatively inefficient. The operation costs change;
navigation between nodes of document becomes the
most expensive operation while disk access costs in
the local processing become cheaper. Paths which
share the same prefix may finish on different net-
work nodes. Different parts of a single document
may lack any directly represented relatioships.

The problem of the distributed query evaluation
on semistructured data was studied in [14]. We con-
sidered this work as a starting point of our research.

This paper is organized as follows: in section 2
we introduce a network model of a distributed doc-
ument. Section 3 introduces some criteria of a
query evaluation algorithm efficiency and in sec-
tions 4.1, 4.2 we describe query evaluation algo-
rithms able to answer to regular expression queries
in different kinds of distributed documents. In sec-
tion 5 we provide an analysis of the algorithms with
respect to the efficiency criteria.

2 Network model of the document

We will use the definition of a distributed document
which closely resembles a definition of distributed
database in [14]

Definition 1. A distributed document db is a tree
whose vertices are partitioned into m sets, called
partitions and denoted db;,i = 1, m. Each partition
db; is stored on a separate network node N;.

Definition 2. A cross link is an edge between ver-
tices v € db; and u € db; where ¢ # j. A cross link
must not create a cycle in a document.

Definition 3. A tree with vertices representing net-
work nodes and edges representing relationships be-
tween nodes is called a network tree of a document.

2.1 Prefix trie

If we consider a virtual XML document as a bag
of paths we will find that paths usually have com-
mon prefixes and that there may be two or more
equal paths which physically end on different net-
work nodes. Querying a document we probably
wouldn’t desire to distinguish equal paths stored on
different nodes or equal prefix instances which be-
long to different paths. In order to achieve this
goal we model a document as a trie [11] which is
distributed over the network and is supported by
the special enumeration of vertices described in sec-
tion 2.2.

2.2 Vertices numbering scheme

Very often when searching in an XML document
it is necessary to determine whether two nodes v
and u are in parent-child or ancestor-descendant
relationship. This problem which is called here-
after Ancestor-Descendant Relationship Determina-
tion (ADRD) problem is more or less easy to solve
when the whole document instance is stored in the
main memory. In such case we may just build two
paths from » and v to the root of the document
and check whether one path is a prefix of another.
If the document resides on a secondary storage like
hard disk the solution becomes more time consum-
ing because it involves a number of expensive I/O
operations. When the document is distributed such
approach becomes unacceptable due to high cost of
the network communication operations.

A popular solution of ADRD problem is to assign
some numbers to the vertices of the document tree
according to some rules. If we know the numbers
assigned to vertices v and u we can solve the ADRD
problem with the simple arithmetic calculations.

So far, several numbering schemes have been pro-
posed [7, 5]. They are mostly based on the Dietz
enumeration [4] and suffer from the common prob-
lem: they have to be rebuilt after a single insert or
delete operations in the most primitive case or af-
ter a series of such operations in more sophisticated
solutions.

We have developed our own numbering scheme
which has some important features:

e Insertions and deletions of vertices do not cause
renumbering

e Enumeration is relocatable in the sense that two
parameters necessary to enumerate all vertices
on some site are the local root number and the
alphabet size

e Each local enumeration can participate in dif-
ferent distributed enumerations

Vertices are assigned the rational numbers recur-
sively according to the formula:

Num(a
4(v) = glparent(v)) + W

where « is a label of the incoming edge, Num/(«) is
the ordinal number of « in the alphabet X. The root
of the document is assigned a number g(root) =0

Proposition 1 (ADRD problem solution). Two
vertices v and u are in
ancestor-descendant relationship iff

1

q(v) < q(u) < q(v) + (5[+ 1)derth()

A geometric sense of this enumeration is a parti-
tion of some interval into disjoint subintervals each
corresponding to a symbol from the alphabet. Each
subinterval in turn is partitioned by subintervals of
the next level, etc.

2.3 Relationships between nodes

Relationships between network nodes which are in-
cluded into the document may vary differently. We
assume that a root node of the document is naviga-
ble (that is, there is a kind of pointer) from any node
of the document. We also assume that destination
nodes of cross links are navigable from source nodes.

Concerning other relationships, we consider two
options:

e Loosely connected system: there are no other
relationships between nodes

o Tightly connected system: any node is naviga-
ble from the root node

We will consider query evaluation algorithms for
loosely and tightly connected systems in the rest of
the paper.

3 Query evaluation algorithm effi-
ciency

It is clear that query evaluation algorithms behave
differently. In order to compare them we need to
give some definitions of an algorithm efficiency. The
definitions given below are motivated by our goal
to minimize query evaluation time. They take into
account that connection setup cost is high so it is
necessary to decrease the total count of connections;
huge amounts of data transferred between nodes also
affect performance so an efficient algorithm should
transfer only relevant data.

The first definition which is stronger than the sec-
ond one was introduced in [14]. It involves a notion
of communication step which is a set of network con-
nections established simultaneously between a dis-
patcher (see section 4) and other nodes. However, in
a loosely connected system not all nodes are naviga-
ble from dispatcher. We provide a relaxed definition
of efficiency which still bounds the total number of
connections but doesn’t require them to be estab-
lished simultaneously.

Definition 4. An evaluation algorithm is efficient
if
1. The total number of communication steps is
constant

2. The total amount of data transfered during
query evaluation depends only on the size of the
answer to the query and number of cross links

Definition 5. An evaluation algorithm is scalable if

1. The total number of connections established
during query evaluation depends on the total
number of network nodes only

2. The total amount of data transfered during
query evaluation depends only on the size of the
answer to the query and number of cross links

An efficient algorithm, obviously, is scalable. At
the same time, the total number of network connec-
tions which are established by an efficient algorithm
is not necessarily less than the number of connec-
tions which are established by a scalable, but not
efficient algorithm; the efficiency is achieved due to
parallelizing the connections.

4 Query evaluation

We will describe query evaluation algorithms for
loosely and tightly connected systems in sections 4.1
and 4.2. Both algorithms are modeled as state ma-
chines and operate with some objects which are
passed between nodes.

A node propagates a query to descendant nodes
packing it into context object. This object has the
following attributes:

A Automaton corresponding to the query
S A subset of the automaton states

pPcv A context vertex represented by a valid number
in our numbering scheme.

If some node decides to propagate a query to
descendant nodes, it creates an intermediate table
which stores information necessary to join results
obtained from descendants. The table is defined as
follows:

CONTINUATIONS (

ENTRY_VERTEX,
// Number of the vertex serving as
// entry point for the query on this
// node

ENTRY_STATE,
// State of the automaton when query
// enters this node

CONTINUATION_VERTEX,
// Number of a vertex on a remote node
// where the query continues

CONTINUATION_STATE
// State of the automaton when query
// leaves this node

Each node involved into evaluation returns an in-
stance of results table to ancestor node:

RESULTS (

ENTRY_VERTEX,

ENTRY_STATE,
// These attributes have the same
// meaning as corresponding in
// CONTINUATIONS table

RESULT_VERTEX
// Number of a vertex where automaton
// comes to accepting state

We distinguish a dispatcher node whose responsi-
bility is to start the evaluation of submitted query
and to create the final result. This node is likely
to be a root node although in a tightly connected
system it can be any node of the network.

4.1 Algorithm for a loosely connected sys-
tem

State machine of the query processor is shown on
the fig. 1.

4.1.1 State 1A: standby mode

System is waiting for queries. Query) submitted on
some node moves the system to State 1B and passes
a context object

0 = {S=’’start’’, pcv=‘¢0/0’"}

to the dispatcher.

4.1.2 State 1B: Evaluation on a local node

In this state the system evaluates the query on a
local node N; owning vertex pcv.

For each s € S the local query processor runs
the automaton A starting from the state s on the
local partition db; data rooted by pcv vertex. Dur-
ing evaluation the processor changes the local vari-
ables currentVertex and currentState which in-
dicate currently processed vertex and state of the
automaton and initially are assigned values pcv and
s correspondingly. Local query processor inserts new
records into tables CONTINUATIONS and RESULTS ac-
cording to the following rules:

1. If the automaton comes to the accepting
state or if there are no outgoing edges from
currentVertex then the processor runs

INSERT INTO RESULTS VALUES (pcv, s,
currentVertex)

2. If the next transition is .x or the outgoing edge
from currentVertex is a cross link then the
processor runs

INSERT INTO CONTINUATIONS VALUES (pcv,
s, u, currentState)

for each u € crosslinktargets(db;),u €
descendants(currentVertex).

(“State 1A: Standby Mode

(C Pass the query to root node)

(State 1B: Node-local data processing \

Filling tables -

V)
CONTINUATIONS
[filled with values]

iQuery submitted Z
.

> RESULTS
[contains node—local results]

completed. Descendants require

State 1C: Node-local processing
processing

Pass the query to descendants)

S ——

Descenddnt 1 Descendgnt N

State 1B) State 1B)

i*h

(State 1E: Node-local processing

>/ Copy node-local results
to final results
Y
RESULTS

[contains final results]

(StatelD: Processing finished

I
I
I
I
I
|
1
v

L (Return results to user)

J

completed. Results from
descendants are obtained

\

Internal activities s — —_— ——
- A
< -

Figure 1: Algorithm in a loosely connected system

If in the end of this activity CONTINUATIONS ta-
ble contains some tuples then the system moves to
State 1C, otherwise it moves to State 1D

4.1.3 State 1C: Passing the query to the de-
scendant nodes

. The system reads the data from CONTINUATIONS

table and for each distinct value u of
CONTINUATION_VERTEX attribute constructs a
new context object

0 = {pcv=‘‘u’’, S=‘‘select

CONTINUATION_STATE from CONTINUATIONS where
CONTINUATION.VERTEX=u’’}.

Then the object 0 is passed to the node N; which
owns the vertex u. The system creates a swimlane
for each N; and forks a State 1B.

4.1.4 State 1D: Returning results to the an-
cestor node.

The active node analyzes its RESULTS table and for
each value of ENTRY_STATE eliminates vertices lying
on the same path retaining only the deepest one.
Then the table RESULTS is passed back to caller node
and system moves to state 1E.

4.1.5 State 1E: Processing results obtained
from descendant nodes

The caller collects all results obtained from the
descendants making a union
UNITED_RESULT(CONTINUATION VERTEX,
CONTINUATION_STATE, RESULT_VERTEX) of re-
turned RESULTS tables. Then it makes a join
CONTINUATIONS b<t UNITED RESULT, unites the result
of join with its local RESULTS table and moves to
State 1D.

CONTINUATIONS
[filled with values]

RESULTS

[contains node—local results]

RESULTS
[contains final results]

| | A
4 | State 1E: Node—-local processing completed. Results from descendanls are obtained | N
| | :
V |
|_ Joining UNITED_RESULT and Creating a result of the subtree
CONTINUATIONS processing
ro A
~
- ~
Processing results from UNITED_RESULT \A RESULTS
descendants > [created] [contains results from the descendants]
\. J

Figure 2: Processing results in a loosely connected system

4.2 Algorithm for a tightly connected sys-
tem

In a tightly connected system it makes a sense to
broadcast a query @ to all nodes, evaluate it on each
node and return results to dispatcher who constructs
the final result. Such approach possibly establishes
more network connections between nodes because
each node is accessed even if it doesn’t store relevant
data. However, in contrast to precedence order be-
tween network connections in loosely connected sys-
tem, we can establish all connections concurrently
and thus the time spent to evaluate a query may be
lesser.

State machine of this algorithm is very similar to
one in loosely connected system. The difference is
that dispatcher initiates node-local evaluation simul-
taneously for all nodes passing the context object
0 = {S = allstates(A),pcv = root(N;)}.

Each node calculates tables RESULTS and
CONTINUATIONS and returns them to the root node.
The system moves to state 2E and calculates the
final result.

4.2.1 State 2E: Calculation of the final re-
sult
In this state (fig. 3) the system unites all

CONTINUATIONS and RESULTS table returned from
nodes and makes a join CONTINUATIONS
UNITEDRESULTS. If this join is not empty then it
is considered as a new instance of UNITED_RESULTS
table and join is performed again. Otherwise the
selection

OENTRY_STATE—'start’ (UNITED_RESULTS)

gives the final result.

5 Analysis of the algorithms

During a query evaluation in a loosely connected sys-
tem, each node may contact its children and wait for
results from them. As we assume that a document
is a tree, we may say that each node may be called

by the ancestor and only by the ancestor and when-
ever the node is called it returns a result to ancestor.
Thus, the total number of connections is bounded by
2% m, where m is a number of network nodes. How-
ever, the number of communication steps is as big
as 2 H where H is the height of the network tree.
Thus, although being efficient in terms of definition 5
this algorithm violates item 1 of definition 4.

Each node which participates in the evaluation
process receives a small context object and sends
back an instance of RESULTS table whose size is O(r)
where 7 is the size of the query answer. These data
are passed from the leaf nodes to ancestors and fi-
nally reach the dispatcher. Hence, the total amount
of data transferred during the query evaluation is
O(m)*O(r) and this algorithm does not violate item
2 of both definitions

In a tightly connected system a dispatcher ac-
cesses every node of the network only twice and con-
nections are established simultaneously. Thus, the
number of communication steps is constant. The
dispatcher sends to nodes a small context object and
receives a result object whose size depends on the
query result size only. Thus, this algorithm is effi-
cient in terms of both definition 4 and definition 5.

6 Conclusions

In this paper we have presented a network model of
the distributed semistructured data which allows a
set of network nodes storing parts of XML document
to cooperate in building a virtual distributed XML
document. We also have described algorithms of a
regular expression query evaluation for two types of
the network nodes relationships. These algorithms
behave efficiently in terms of network connections
count and amount of data transferred.

References

[1] Apache Software Foundation. XIndice User

Manual.

[2] Brian Cooper, Neal Sample, Michael J.
Franklin, Gisli R. Hjaltason, and Moshe Shad-
mon. A fast index for semistructured data. In

~ RESULTS CONTINUATIONS RESULTS
[contains final results] [filled with values] [contains node~local results]
/]\ | |
4 State 2E:)\
I Query has been processed by node—local processors and now,we calculate the final result
| | |
\'A v
Unite CONTINUATIONS instances Unite RESULTS instances
| (|) () __ >|UNITED RESULTS
I v ~
I UNITED CONTINUATIONS —_ L -
L Join /~ Treat join result as refined
I > \ UNITED_RESULTS)
I I Join result /I\
| S [ey I
Treat the last UNITED_RESULTS as
query result ﬂ
lt\ [Join result is empty] |
. J

Figure 3: Processing results in a tightly connected system

The VLDB Conference, pages 341-350. VLDB,
2001. citeseer.nj.nec.com/cooper0lfast.html.

[3] Alin Deutsch, Mary Fernandez, and Dan
Suciu. Storing semistructured data with
STORED. In Proceedings of the 1999 ACM
SIGMOD international conference on Manage-
ment of data, pages 431-442. ACM Press, 1999.
http://doi.acm.org/10.1145/304182.304220.

[4] Paul F. Dietz. Maintaining order in a linked list.
In Proceedings of the 14th Annual ACM Sympo-
stum on Theory of Computing, pages 122-127,
1982.

[5] Torsten Grust. Accelerating XPath location
steps. In Proceedings of ACM SIGMOD 2002,
June 4-6, Madison, USA, 2002, 2002.

[6] IBM. XML Eztender
Brochure, 2000. http://www-
3.ibm.com/software/data/db2/extenders/
xmlext/index.html.

[7] Quanzhong Li and Bongki Moon. Indexing and
querying XML data for regular path expres-
sions. In Peter M. G. Apers, Paolo Atzeni,
Stefano Ceri, Stefano Paraboschi, Kotagiri Ra-
mamohanarao, and Richard T. Snodgrass, edi-
tors, Proceedings of 27th International Confer-
ence on Very Large Data Bases. Morgan Kauf-
mann, 2001.

[8] Jason McHugh, Serge Abiteboul, Roy
Goldman, Dallas Quass, and Jennifer
Widom. Lore: a database manage-
ment system for semistructured data.
ACM SIGMOD Record, 26(3):54-66, 1997.
http://doi.acm.org/10.1145/262762.262770.

[9] Microsoft Corp. Microsoft SQL Server 2000
Books online, 2000.

[10] Sun Microsystems. The
Java Web Services Tutorial.

[11]

[12]

[13]

[15]

[16]
[17]

[18]

[19]

http://java.sun.com/webservices/docs/eal/
tutorial.

Donald R. Morrison. PATRICIA - Practical
Algorithm To Retrieve Information Coded in
Alphanumeric. JACM, 15(4):514-534, 1968.
http://doi.acm.org/10.1145/321479.321481.

Oracle Corp. Application Developer’s Guide -
XML, 2001.

Jayavel Shanmugasundaram, Kristin Tufte,
Chun Zhang, Gang He, David J. de Witt, and
Jeffrey F. Naughton. Relational Databases for
Querying XML Documents: Limitations and
Opportunities. In Proc. of the VLDB’99, pages
302-314. Morgan Kaufmann, September 1999.

Dan Suciu. Distributed query evaluation on
semistructured data. ACM Transactions on
Database Systems (TODS), 27(1):1-62, 2002.
http://doi.acm.org/10.1145/507234.507235.

W3C. XML Schema.
http://www.w3c.org/XML/Schema.

W3C. XSL. http://www.w3c.org/Style/XSL.

W3C. Extensible Markup Language (XML) 1.0,
1998. http://www.w3.org/TR/REC-xml.

W3C. XML Path Language (XPath) Version
1.0, 1999. http://www.w3.org/TR/xpath.

W3C. XQuery 1.0: An XML Query
Language, WS8C Working Draft, Decem-
ber, 2001. http://www.w3.org/TR/2001/WD-
xquery-20011220/.

