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Abstract

In the area of Information Retrieval, one of
the most typical task is to develop methods
for querying and retrieving relevant docu-
ments from a huge collection of documents.
The three decades old vector model, proved
to be qualitatively better than the widely
used boolean model, is still lacking an effi-
cient implementation which would start its
broader usage. In this paper we propose
an efficient implementation of vector model,
based on metric indexing. This method pro-
duces a hierarchical organization of the doc-
uments via clusters of related documents.
We have chosen the M-tree for this purpose
as a suitable indexing structure.

Keywords: vector model, vector query, M-tree,
LSI, efficient indexing, random projections

1 Introduction

In the area of information retrieval [2, 12, 17], one
of the most typical task is to develop methods for
querying and retrieving relevant documents from a
huge collection of documents. The area of text re-
trieval [2] specializes this task into the context of text
documents. The demands for efficient implementa-
tion of various text retrieval methods are high and
still increasing with the boom of many applications
managing e.g. the digital libraries, internet collec-
tions (web pages and sites), editorial texts, newspa-
per articles, etc.

The effectiveness (in the sense of retrieval quality)
of various text retrieval systems (TRSs) is usually
measured using two parameters, the precision P and
recall R. Given a collection C of documents, a query
@ on C, and the size |Ag| of the answer Ag C C
(retrieved by processing the query @ on C), then
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where |Rg| is the number of relevant documents (it
means documents relevant to the query @ in the col-
lection C') in the answer (i.e. Rg C Ag) and |R¢|
is the number of relevant documents (relevant to the
query @) in the whole collection C (R¢ C C). In
other words, the precision measures the proportion
of relevant documents in the query answer Ag, while
the recall measures the proportion of all relevant
documents in the query answer Ag. The relevancy
of a document to a query is determined explicitly,
usually by human classification. For these purposes,
editions of classified document collections are being
published periodically, e.g. the TREC collections
[15]. For an effective TRS, both parameters, the
precision and the recall are close to 1 (according to
most queries). The P and R are usually negatively
correlated, i.e. when the TRS is tuned to achieve
higher P, the R decreases and vice versa.

In the text retrieval models, the efficiency (in the
sense of system performance or response time) is of-
ten regarded as unimportant or secondary. However,
in the real-world applications, the efficiency is much
more important than the effectiveness since the user
needs to obtain an answer quickly (or in a reason-
able time). Even the most effective system is useless
if it is inefficient, thus an indexing method is needed
to achieve an acceptable efficiency. The efficiency
can be further specified as indexing and retrieval ef-
ficiency. The indexing efficiency is the time needed
for index construction or index update while the re-
trieval efficiency is the time needed for answering the
queries issued by users.

For internet-based TRSs managing huge collec-
tions of documents (which are our major subject to
research) there is a strong requirement for fast re-
trieval since thousands of users might want to re-
trieve an information at a moment. In such TRSs,
the needs for fast indexing are much less important
than the needs for fast retrieval since the document
collection increase is much lower than the total num-
ber of queries issued by all the users (within a given
time period). For that reason, we deal with the re-
trieval efficiency in our approach.

Among all of the text retrieval models developed
so far, two of them (and their modifications) are still



dominant — the boolean model and the vector model.
In the boolean model, the document is represented
by a set of terms (a term is the basic lexical unit
of the text, e.g. a word of natural language) and
the queries are based on boolean expressions. The
boolean model is easy to implement using inverted
files where the indexing and querying is very effi-
cient. However, the querying in the boolean model
is very simple and tightly related to the terms, not
to the underlying semantics of the document. In
particular, for retrieving relevant documents in the
boolean model we must know which terms should (or
should not) the document contain, but this is usu-
ally the information we do not know in advance. The
drawbacks of the boolean model are reflected by the
lower values of precision and recall parameters when
compared to the vector model. However, the major-
ity of current well-known commercial TRSs manag-
ing huge collections of documents (like the internet
searching engines Google, Yahoo, AltaVista, MSN,
etc.) exploit the boolean model for one simple rea-
son — for the vector model there still does not exist
an efficient implementation. The effectiveness eval-
uation of the vector model and the boolean model is
well-known, we refer to e.g. [17].

In this paper we introduce an efficient method for
vector model implementation based on metric index-
ing. In the next subsection, basic concepts of the
vector model are mentioned. In the Section 2, exist-
ing approaches to the vector model implementation
are discussed. The new method of metric indexing is
presented in the Section 3. Experimental results are
presented in Section 4. Finally, the Section 5 con-
cludes the paper and gives an outlook to the future.

1.1 Vector Model

In the vector model, each document D; (0 <1i < m,
m = |C|) in the collection C is characterized with
a single vector d; where each coordinate d;; of the
vector is associated with term ¢; from the set of all
unique terms over C' (0 < j < n, where n is the
number of terms). The value of a vector coordi-
nate d;; is a real number w;; > 0 representing the
weight (or significance) of the j-th term to the i-th
document!. From this point of view, the documents
can be represented as points within an n-dimensional
vector space. Hence, in the vector model, the col-
lection of documents can be represented using an
n X m term-document matriz A. For an example of
a term-document matrix see Figure 1.

There are many ways how to compute the term
weights w;; stored in A. One of the most popular
way is based on inverse document frequency (IDF)
of a term ¢; in C,

)

IDF; = lOg(DF
i

where DF} is the number of documents containing
the term ¢;. In other words, IDF}; for a term ¢;

n the simple model, w;; = 1 means that the term is
present (at least once) in the document while for w;; = 0 it
is not. The integer weight can be also treated as a frequency
of the term in a document.

document
term \ D, Dy Ds Dy Dy

database 0 0.48 0.05 0 0.70
vector | 0.23 0 0.23 0 0
index | 0.43 0 0 0 0
1mage 0 0 0.10 0 0.54
COmpression 0 0 0 0 0.21

multimedia | 0.12 0.52 0.62 0 0
metric 0 0 0.32 0.40 0
space | 0.42 0 0 0.24 0

Figure 1: Term-document matrix A containing five
8-dimensional document vectors (columns).

decreases with increasing number of documents in
which ¢; is occuring and vice versa. In fact, the
IDFj classifies the significance of a term ¢; in C —
the interpretation is intuitive: If ¢; is occuring in the
majority of documents then it cannot differentiate
among them and thus IDFj is low. For example,
the English terms "the”, "and”, ”then” are usually
meaningless (in the classic vector model). On the
other side, if ¢; is occuring in only few documents or
even in a single document, the IDF} is high.
Weights w;; are then computed as

Wij; = TF” * IDFJ

where T'Fj; is the frequency of term ¢; in document
D;. The weight is product of IDF; (a term global
qualitative factor) and T'F;; (a term local quantita-
tive factor). The interpretation of TF;; says that a
document with multiple occurences of ¢; is more ap-
propriate to the semantics of ¢; and thus the weight
must be higher.

The most important problem about the vector
model is the querying mechanism that searches the
matrix A according to the query and returns rele-
vant documents. The query is represented also with
a vector (the same way as a document is represented)
and we want to return the most similar (relevant
respectively) documents to the query vector (query
document respectively). For this purpose a similar-
ity measure must be defined assigning a similarity
value to each pair of query and document vectors
(q,d;) where ¢ is the query vector and d; is the doc-
ument vector. In the context of text retrieval the
cosine measure

n
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is widely used for its best properties. By the query
processing, the columns of the matrix A (document
vectors) are compared using the cosine measure with
the query vector and sufficiently similar documents
are returned as a result.

SIMcos (q: dl) =

2 Existing Approaches

Theoretically, the vector model is elegant and clear.
For a small collection (say up to 1000 documents)
and a small set of unique terms (say up to 1000
terms), the implementation of the term-document



matrix as well as the query processing can be real-
ized by simple methods, sequentially scanning the
matrix. However, the problem arises when the num-
ber of terms and documents is huge, say 1,000,000
documents and 100,000 terms. In such case, the ma-
trix would have 109 of cells and its storage would
take over 350 GB (assuming 4 bytes for a cell). The
term-document matrix is fortunately sparse, approx-
imately up to 1% of cells is non-null in real-world
collections, thus the matrix storage size can be re-
duced by a factor near to 100. However, this is only
a slight optimization since 3.5 GB matrix is still hard
to manage. To keep the vector model viable even for
such huge collections it is necessary to develop a fun-
damentally efficient vector model implementation,
significantly reducing the amount of data needed to
be processed.

2.1 Sequential Scan

The basic straightforward implementation for query-
ing is the sequential column-scan over the whole ma-
trix A. For each column (document vector) of the
matrix the similarity measure is computed against
the query vector and based on the returned value
the appropriate document is or is not added to the
result. As mentioned in the example above, to eval-
uate a single query means, in fact, read the 3.5 GB
matrix and call the similarity function one million
times. For most current commercial TRSs dealing
with the vector model, the sequential approach is
sufficient due to the small sizes of document collec-
tions they manage.

2.1.1 Dimensionality Reduction

A way how to reduce the size of the term-document
matrix is the dimensionality reduction, i.e. reduc-
tion of the set of terms or replacement of the large
set of terms by a smaller set of semantic concepts.
This can be achieved by several approaches:

e Subjectively — using human decision on which
terms are not important, these terms are further
ignored.

e Heuristically — using stemming techniques re-
ducing a family of various forms of the same
word into single stem or using thesauri.

e Statistically — using statistical methods that
search in the collection for semantic concepts
common to multiple documents in the collec-
tion. These concepts (their number is far less
than the number of terms) are then used for
the matrix construction instead of the original
terms. The reduced document vectors consist-
ing of concept weights instead of term weights
are often called pseudo-document vectors [7].

Nowadays, the statistical methods represent a pow-
erful solution because of their ability to discover
latent semantics inside the documents (realized
through the semantic concepts instead of terms).
The methods of latent semantic indexing (LSI) [7, 3]
exploit some constructions well-known in the area

of matrix analysis and linear algebra. Specifi-
cally, the term-document matrix is decomposed us-
ing SVD (singular-value decomposition) and the re-
sulted decomposition is used for creation of a lower-
dimensional concept-document matrix, based on the
most significant singular values. A particular com-
plication in usage of LSI is its computational com-
plexity, but the index (concept-document matrix re-
spectively) construction time is considered to be not
so important since the query response time is usu-
ally the "bottleneck” of majority TRSs. In practi-
cal usage, the LSI can reduce the dimensionality of
the original space even 1000 times while the preci-
sion and recall parameters are similar or even better
when compared to the original vector model [7].
Another and computationally much cheaper pos-
sibility is a random projection [4, 1] of the high-
dimensional term-document matrix to a lower-
dimensional concept-document matrix (here the
used concepts are not so sophisticated as by LSI).
In practice, using random projections we can reduce
the dimensionality up to 100 times while the pre-
cision and recall parameters stay over 90% of the
precision and recall of the original vector model [4].

2.1.2 Summary

Sequential scan over the term-document matrix
(even in compact form) is advantageous only if the
matrix is small. The methods of statistical dimen-
sionality reduction (LSI, random projections) are
profitable mainly from the semantic point of view —
they qualitatively improve the original vector model
which is reflected in the higher precision and recall
values. On the other side, the dimensionality re-
duction does not imply the overall storage reduction
since the new concept-document matrix is not sparse
yet. In the case of random projections, storage of the
concept-document matrix can be even much larger
than storage of the original sparse term-document
matrix in compact form (e.g. in the CCS format [9]).
Nowadays, the query processing over the concept-
document matrix is still realized using the sequential
scam, so the retrieval inefliciency remains.

2.2 Signature Methods

Signature files are a popular filtering method in the
boolean model [10]. However, there were only few
attempts to use them in the vector model, because
their usage is not so straightforward due to the term
weights.

A signature is a bit vector of F' bits, where F'
is called the signature length. The bits are used to
record the presence of terms in a document. Each
term can be encoded into a signature using a hashing
function setting m bits to 1. Number of bits set to
1 is called the signature weight.

Signature of a document is created from signa-
tures of terms either by chaining them — which leads
to long signatures — or by ORing them. The lat-
ter technique, called superimposed coding, is widely
used. Query signature is generated similarly by su-
perimposing signatures of terms contained in query.



When a conjunctive query in the boolean model
is evaluated, query signature Sqg is compared with
documents’ signatures Sp,. A match with document
D; is found if and only if Sp, A Sg = Sg.

Because the hashing function and the superim-
posing are not uniquely invertible functions, some
signatures can be matched even they are not rel-
evant to the query. They are referred to as false
drops. The probability of a false drop is an impor-
tant factor for signature files, because it is quite ex-
pensive to eliminate false drop — selected documents
must be searched by a different method to do so.
One possible solution is a segmentation of document
into several blocks of given length where every block
has its own superimposed signature. In this case,
we must process the query for every term contained
separately. The result is obtained by intersection of
these semi-results.

The major problem concerning signatures in the
vector model is, that not all the words used in a
query have to appear in relevant document. This
means, that condition Sp; A Sg = Sg is not usable,
because relevant documents would be filtered out.

One possibility is to expect that document signa-
tures must match at least k% of query signatures.
However, the relevant documents could be still fil-
tered out. The number of retrieved non-relevant
documents is increasing rapidly when we decrease
the number of common words needed.

2.2.1 Weight-Partitioned Signature Files

Weight-partitioned signature files (WPSF), pro-
posed by Lee and Ren [13], try to record the term
weights in so-called TF-groups. For the best perfor-
mance we need to separate term frequencies in the
current document (T'F') and in the whole collection
(IDF). For every T'F a separate signature file (TF-
group) is created. Document is retrieved by search-
ing query terms signatures in every signature file.
The length of a signature, weight of a term signa-
ture, and a maximal number of terms per signature
are precomputed for every signature file based on
available data or expected TF' distribution to mini-
mize the effect of false drops. The index is searched
from the group with highest T'F — which ensures that
all relevant documents are retrieved — or vice versa.
The similarity is directly computed and gives us ap-
proximate results (slightly higher than the real ones
in the case of false drops) even without additional
similarity computation. This result can be either
used directly or the distance can be recomputed for
selected vectors.

Lee and Ren used in their proposal classical se-
quential signature file, which caused excessive search
of signature file. We have proposed a speedup to this
method recently [14] — the S-trees [8], a modification
of BT-tree, minimizing signature weights in nodes
by insertion into node with least weight increase.
The search continues only in branches matching the
queried signature and it can stop before reaching leaf
nodes, in case that no signature matches the query.

2.2.2 VA-file

VA-file [5] is sometimes marked as a signature
method, while sometimes only as a signature-like.
It creates short bit-strings of the length [ for ev-
ery dimension by segmenting it into 2 intervals and
taking interval number as the signature. Space is
segmented into small cells (like in the case of grid
files) by concatenating these bit-strings into ”signa-
tures”. The search is executed on ”signatures” first
(all signatures are scanned sequentially), the filtered
documents are searched by a classical method in the
second phase.

2.2.3 Summary

Classical signatures are hardly usable with the vec-
tor model because of the term weights. They do not
guarantee finding all the relevant documents as they
do in the boolean model. The concept of Weight-
partitioned signature files offers a better solution,
but it works well only with discrete weights and
has another drawback — all signature files must be
searched for terms with zero or one appearance in
document, which is true for the majority of queried
terms.

In case of VA-files, the ”signatures” are scanned
sequentially, so the efficiency has to be improved.
VA-files are also hardly usable with text data — the
length of the ”signature” would be too long. Hence,
some kind of dimensionality reduction should be in-
troduced.

3 Metric Indexing

In our approach, we wanted to develop a method
based on an assumption that the documents (as
points in the high-dimensional space) are distributed
in many natural clusters (according to the cosine
measure) within the vector space. We can imagine
such a cluster as a major topic common to all the
documents in the cluster, thus semantically related
documents (their vectors respectively) should reside
inside a single cluster. This intuitive idea will work
only in case that these clusters really exist — this is
a data-specific factor (e.g. randomly generated vec-
tors certainly do not form any clusters).

After we know that the documents in a certain
collection are used to be distributed in clusters, we
can reuse an existing data structure designed for
multidimensional indexing [20] (i.e. structure al-
lowing efficiently store and retrieve high-dimensional
vector datasets). This structure will transform the
implicit clusters into a ”real form” and will create
a cluster hierarchy to speedup the query processing.
Let us emphasize that a well-built cluster hierarchy
is the key objective when creating an efficient index.
Furthermore, the clusters should be disjunctive or,
at least, their total overlap should be minimized.
Such a hierarchical index allows to prune irrelevant
documents during the retrieval, thus only a small
part of the index needs to be processed.



3.1 M-tree

As a promising indexing structure, we have chosen
the M-tree (introduced in [6], elaborated in [16] and
revisited in [18]) which is a dynamic data structure
for indexing objects of metric datasets. The struc-
ture of M-tree was primarily designed for multimedia
databases to natively support similarity queries.

Let us have a metric space M = (D,d) where D
is a domain of objects O; € D and d is a function
measuring distance between two objects. An object
O; is a sequence of features extracted from an orig-
inal database object. In our case, the object O; is
the (pseudo-)document vector of D;. The function
d must be a metric, i.e. d must satisfy the follow-
ing metric axioms (reflexivity, positivity, symmetry,
triangular inequality):

d(0;,0;) = 0
d(0;,0;) > 0 (0 # 0y)
d(ola O]) = d(Oja Ol)

d(0;,0;) +d(0;,0x) > d(O;,O)

Like other dynamic and persistent trees, the M-tree
structure is a balanced hierarchy of nodes. In M-
tree the objects are distributed within a hierarchy of
metric regions (each node represents a single met-
ric region) which can be, in turn, interpreted as a
hierarchy of clusters. As usual, the nodes have a
fixed capacity and a utilization threshold. The leaf
nodes contain entries of the objects themselves (here
called the ground objects) while entries representing
the metric regions are stored in the inner nodes (the
objects here are called the routing objects). For a
ground object O;, the entry in a leaf has a format:

grnd(0;) = [0y, 0id(0;), d(O;, P(O;))]

where O; € D is the object, 0id(0;) is an identifier
of the original DB object (stored externally), and
d(0;, P(0y)) is a precomputed distance between O;
and its parent routing object.

For a routing object O;, the entry in an inner node
has a format:

rout(0;) = [0;,ptr(T(0;)),7(0;),d(0j, P(0;))]

where O; € D is the object, ptr(T'(0O;)) is pointer to
a covering subtree, r(0;) is a covering radius, and
d(0;,P(0j)) is a precomputed distance between O;
and its parent routing object (this value is zero for
the routing objects stored in the root). The entry of
a routing object determines a metric region in space
M where the object O; is a center of that region
and r(0;) is a radius bounding the region. The
precomputed value d(O;,P(0O;)) is redundant and
serves for optimizing the algorithms on the M-tree.
In Figure 2, a metric region and its appropriate
entry rout(O;) in the M-tree is presented. For the
hierarchy of metric regions (routing objects rout(O)
respectively) in the M-tree, only one invariant must
be satisfied. The invariant can be formulated as
follows:

out(Oy)e /
rout(0))
/ptr(T(0))
‘. gmd(Oj)l;EI,%|

Figure 2: A metric region and its routing object in
the M-tree structure.

e All the ground objects stored in the leafs of the
covering subtree of rout(O;) must be spatially
located inside the region defined by rout(0;). e

Formally, having a rout(O;) then VO € T(0;),
d(0,0;) < r(0j). If we realize, this invariant is
very weak since there can be constructed many M-
trees of the same object content but of different
structure. The most important consequence is that
many regions on the same M-tree level may over-
lap. An example in Figure 3 shows several ob-

rout1(Oj)
rout,(O;)
rout1(Op)

grnd(Op& P igmd(ok)i igrnd(Ol)

grnd(O,,,) grnd(0O;) grnd(O))

Figure 3: Hierarchy of metric regions and the appro-
priate M-tree.

jects partitioned into metric regions and the appro-
priate M-tree. We can see that the regions defined by
routy (Op), routi(0;), rout:(0;) overlap. Moreover,
object Oy is located inside the regions of rout(O;)
and rout(O;) but it is stored just in the subtree of
routy (O;). Similarly, the object Oy, is located even
in three regions but it is stored just in the subtree
of rout; (Op).



3.1.1 Similarity Queries

The structure of M-tree natively supports similarity
queries. A similarity measure is here represented by
the metric function d. Given a query object Oy, a
similarity query returns (in general) objects close to
Oy. The similarity queries are of two basic kinds: a
range query and a k-nearest neighbours query.

Range Queries.

A range query is specified as a query region given
by a query object O, and a query radius 7(0y).
The purpose of a range query is to return all the
objects O satisfying d(O,,0) < r(O,). A query
with r(O,) = 0 is called a point query.

k-Nearest Neighbours Queries.

A k-nearest neighbours query (k-NN query) is
specified by a query object O, and a number k. A
k-NN query returns the first k nearest objects to O,.
Technically, the k-NN query can be implemented
using the range query with a dynamic query radius.
In practice, the k-NN query is used more often
since the size of the query result is known in advance.

By the processing of a range query (k-NN query
respectively), the M-tree hierarchy is being passed
down. Only if a routing object rout(0O;) (its metric
region respectively) intersects the query region, the
covering subtree of rout(O;) is relevant to the query
and thus further processed.

3.1.2 Fat-factor

The retrieval efficiency of an M-tree strongly de-
pends on the metric region hierarchy. To maximally
prune the irrelevant parts of an M-tree index, ev-
ery two metric regions on each M-tree level should
have minimal (possibly empty) spatial overlap. Such
a "horizontally non-overlapping” structure allows to
pass only a small number of the M-tree ”branches”
during the query processing and thus makes the re-
trieval more efficient.

To classify the amount of the total horizontal
overlap we use the fat-factor (introduced in [19], ap-
plied to M-tree in [18]). For the fat-factor compu-
tation, a point query for each ground object in the
M-tree is performed. Let h be the height of an M-
tree T', m be the number of ground objects in T, p
be the number of nodes in T, and I. be the total
DAC? of all the m point queries. Then,

I.—h-m 1

fat(T) m (p—h)
is the fat-factor of T', a number from interval (0, 1).
For an ideal M-tree, the fat(T) is zero. On the
other side, for the worst possible M-tree the fat(T)
is equal to one. For an M-tree with fat(T) = 0,
every performed point query costs h disk accesses
while for an M-tree with fat(T) = 1, every per-
formed point query costs p disk accesses, i.e. the
whole M-tree structure must be passed.

2disk access costs, i.e. the number of logical accesses to
M-tree nodes (to their disk pages respectively)

3.2 Application of M-tree to the Vector
Model

For the vector model, the objects O; are the
document vectors, i.e. columns of either term-
document matrix or concept-document matrix.
Metric function cannot be directly the cosine mea-
sure SIM_,s(d;,ds) since it does not satisfy the met-
ric axioms. An appropriate deviation metric can be
defined as vector deviation

d(0;,0;) = arccosine(SIM¢es(0;, 0;))

An approximation of the deviation metric can be
achieved using the Lo metric and a projection of the
vectors onto the surface of a unitary hyper-sphere.
Such a metric could be also expressed using the co-
sine measure as (see details in [11])

d(O“ O]) = \/2 * (]- - SIMCOS(OZJ O]))

The similarity queries natively supported by the
M-tree are exactly the queries required for the vec-
tor model. Specifically, the range query will return
all the documents that are similar to a query docu-
ment more than some given threshold (transformed
to query radius) while the k-NN query will return
the first £ most similar documents to the query doc-
ument.

The benefits of the M-tree to the vector model
could be considerable. The term-document matrix
(concept-document matrix respectively) is hierarchi-
cally indexed according to the semantic clusters hid-
den in the document collection. The structure of the
M-tree is designed to gather the similar documents
together into metric regions (i.e. into document clus-
ters). Since the triangular inequality for d is satis-
fied, many irrelevant document clusters can be safely
pruned, thus the retrieval efficiency is improved.

4 Experimental Results

In the preliminary experiments, we have examined
the disk access costs (DAC) and the computation
costs (CC) for various k-NN queries processing. The
DAC is a well-known criterion of the efficiency eval-
uation while the CC comprises the number of metric
(or similarity function) computations needed for an
operation on the M-tree (e.g. for a query evalua-
tion). Since we deal with high-dimensional vector
spaces the metric computation could be regarded as
expensive (the vectors are very long), thus measur-
ing the DAC together with CC is important for the
overall efficiency evaluation.

The test collection has included the first 45,000
documents of the Los Angeles Times collection (a
part of TREC text collections). For this collec-
tion, three matrices were constructed. The classi-
cal term-document matrix A, the concept-document
matrix obtained by the singular-value decomposition
of A, and the concept-document matrix obtained by
the random projection of A. The dimensionality of
the term-document matrix (i.e. the row count) was
near to 90,000. The dimensionality of the concept-
document matrices was chosen to 100.



The metric indexing was realized over the above
mentioned matrices. The M-tree indexes have con-
tained just the identifiers of the (pseudo-)document
vectors (column IDs respectively), thus the indexes
were relatively small (up to 1.5MB). The M-tree disk
management was separated from the matrix disk
management (the implementation of which is out of
scope here). The M-trees were constructed using
MinMax, Multi-Way, and slim-down techniques (see
details in [18]). The deviation metric (described in
Section 3.2) was chosen for the experiments. The se-
quential file was choosen as a reference index where
the DAC as well as the CC were set to 100%.

For the simplicity, each k-NN query was speci-
fied directly by the identifier of a randomly chosen
indexed document (query document), thus no ad-
ditional query transformation (i.e. a projection of
the query vector to the concept space) was needed.
Hence, the first retrieved neighbour in a k&-NN query
result was the query document itself.

In the presented figures the disk access costs de-
noted as ”M-tree index DAC” represent a size pro-
portion of the M-tree index needed to be processed
during the query processing. The disk access costs
denoted as ”M-tree index seqDAC” represent the
same, but the proportion is related to the sequen-
tial index size. The latter way is more correct if
we wanted to compare the M-tree index efficiency
with the sequential index efficiency since the lower
values of "M-tree index DAC” are deteriorated by
the M-tree storage overhead. Similar notations were
chosen to represent the computation costs where, in
the case of ”M-tree index CC”, the proportion is re-
lated to the maximal number of objects (both the
routing and the ground objects) stored in the M-
tree index. In the case of ”M-tree index seqCC”,
the proportion is related to the number of all in-
dexed documents (i.e. to the number of similarity
computations needed when querying the sequential
index).

In order to ensure the validity of experiments,
each particular query evaluation was tested 200
times independently (using 200 different query doc-
uments) and the results were averaged.

Some configurations of the M-tree indexes used in
experiments are presented in Table 1.

Metric:  deviation
Node capacity: 20
Dimensionality: 10 — 100; 90,000
Documents: 2,500 — 45,000
Tree height: 2 -3

M-tree index size: 100 kB — 1.5 MB

Table 1. Configurations of the M-tree indexes.

4.1 Vector Model and Random Projections

In the first set of experiments, metric indexing of the
classical term-document matrix as well as indexing
of the concept-document matrix created by random
projection was performed.

Figure 4 shows the disk access costs needed to
evaluate a 10-NN query over the term-document ma-
trix in dependence to the number of indexed doc-

uments (denoted with prefix ”Vector”). It can be
observed that for every index size almost the whole
M-tree must be passed. If we recalculate these val-
ues in order to sequential index size then we will get
120% to 160% of sequential index size to be pro-
cessed.
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Figure 4: The disk access costs for the term-

document matrix and RP concept-document matrix
indexes.

Similar results were achieved also in the case of
random projections (denoted with prefix "RP”).

The computation costs needed for evaluation of
a 10-NN query are slightly lower than CC needed
when querying the sequential index (see Figure 5).
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Figure 5: The computation costs for the term-

document matrix and RP concept-document matrix
indexes.

It is obvious that the results achieved by metric
indexing of the term-document matrix as well as the



RP concept-document matrix are insufficient. There
are two reasons for such unsatisfactory results. First,
the dimensionality 90,000 of the term-document ma-
trix is extremely high. In the area of database in-
dexing the consequences of high dimensionality are
called as curse of dimensionality [20], a phenomenon
that negatively affects the performance of any in-
dexing structure. Second, the (pseudo-)document
vectors are not sufficiently clustered (according to
the metric) which is the crucial requirement for ef-
ficient indexing of high-dimensional datasets. How-
ever, there might exist another M-tree configurations
(in particular a choice of another metric) for which
the indexes over the term-document matrix and/or
the RP concept-document matrix will be more effi-
cient. This is also subject of our future research.

4.2 The Efficient Latent Semantic Indexing

In the second set of experiments, metric indexing of
the 100-dimensional concept-document matrix cre-
ated using SVD was performed.

In Figures 6 and 7 the DAC and CC in depen-
dence to the number of indexed documents are pre-
sented. We can observe that with the increasing
number of indexed documents the costs are decreas-

ing.
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Figure 6: The disk access costs for the SVD concept-
document matrix index (in order to increasing num-
ber of documents).

This shows that the increasing number of docu-
ments forms relatively tight clusters and this is re-
flected by the lower costs. It is worth to mention
that the computation costs needed for evaluation of
a 10-NN query are up to four times lower when com-
pared with the sequential index.

On the other side, with the increasing dimension-
ality the costs are also increasing (see Figures 8 and
9) which is the direct consequence of the dimen-
sionality curse. It is an open question (which we
would like to answer in the future) whether the costs
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Figure 7: The computation costs for the SVD

concept-document matrix index (in order to increas-
ing number of documents).

decrease caused by the increasing number of docu-
ments will be faster than the costs increase caused
by the increasing dimensionality for even higher di-
mensionalities and higher numbers of documents.
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Figure 8: The disk access costs for the SVD concept-
document matrix index (in order to increasing di-
mensionality).

4.2.1 The Choice of Metric

The last experiment shows how the choice of metric
for the M-tree could affect the retrieval efficiency. In
addition to the M-tree indexes exploiting the devia-
tion metric we have also examined indexes exploit-
ing the approximation metric (in figures denoted as
UL2) described in the Section 3.2.

For both M-tree indexes (for the one exploiting
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Figure 9: The computation costs for the SVD
concept-document matrix index (in order to increas-
ing dimensionality).

the deviation metric as well as for the one exploit-
ing the UL2 metric) the answers to queries were ex-
actly the same. However, the deviation-based M-
tree shows up to 15% performance increse over the
UL2-based M-tree, see Figure 10. This behaviour
can be also observed in Figure 11 where the DAC in
dependence to the number of nearest neighbours is
depicted.
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Figure 10: The disk access costs for the SVD
concept-document matrix indexes (in order to met-
ric choice and increasing dimensionality).

4.2.2 Technical Limitations

The experiments ran on an Intel Pentium®4,
2.53GHz, 512MB RAM, 120 GB HDD, under Win-
dows XPTM Professional. For the SVD experi-

Disk access costs (k—NN queries), dim. 100, 45000 docs
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Figure 11: The disk access costs for the SVD

concept-document matrix indexes (in order to metric
choice and increasing number of nearest neighbours).

ments we have used the MatLab®6.5 which stores
the matrices in system memory and lacks a persis-
tent matrix storage management. For this reason
the size of concept-document matrix was limited to
100x45,000.

In the future we are going to implement our own
SVD package supporting persistent matrix manage-
ment. With this package we will be able to create
and index concept-document matrices of much larger
size, say up to 500 x 1,000,000.

5 Conclusions And Outlook

In this paper we have proposed an efficient imple-
mentation of the vector model for Information Re-
trieval. For this implementation we have assumed
that in a text collection there exist clusters of re-
lated documents (related according to the cosine
measure). Due to the clusters it was possible to
index the (pseudo-)document vectors using the M-
tree structure which was designed to index metric
datasets.

The experiments have shown that metric indexing
is not suitable (at least for this time) for the classic
vector model as well as for the random projections.
On the other side, our approach seems to be very
promising for an efficient implementation of the la-
tent semantic indexing where the document clusters
are more distinctive.

In the future we are going to continue the tun-
ing of M-tree configurations, especially the choice of
other suitable metrics based on the cosine measure
will be fundamental. Anyway, for any further re-
search, experiments with huge document collections
must be performed.
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