
Navigating and Browsing 3D Models in 3DLIB

Hesham Anan, Kurt Maly, Mohammad Zubair

Computer Science Dept. Old Dominion University, Norfolk, VA, 23529
(anan, maly, zubair @cs.odu.edu)

Abstract
Traditional digital libraries have proved to
work well with one-dimensional data such as
reports and two-dimensional data such as
images. However, handling three-dimensional
(3D) data in digital libraries is relatively new
and faces many challenges such as: efficient
storage, fast retrieval, and a user-friendly
search and discovery process. We have
previously developed a prototype for a digital
library framework for 3D models (3DLIB) that
supports compressed storage, along with
progressive retrieval of 3D models. In addition,
the prototype supports search and discovery
services that are tuned for 3-D models. In this
paper we introduce a new service to browse
large number of 3D models based on their
shapes. For this we develop a clustering
algorithm based on a similarity measure to
group similar models. We present results of
using our browsing scheme on a test bed
digital library.

1 Introduction
Recently there have been rapid improvements in
modelling, acquiring, and visualizing of 3D models. As
a result, the volume of 3D models available in digital
form is rapidly growing, which is creating a need for a
digital library to manage publishing, storing, and
discovering of 3D models. In (anan02) we described a
digital library framework (3DLIB) that manages the
storage, retrieval and discovery of 3D models. In this
paper, we introduced signature transform of a 3D model
and illustrated how to use this representation in
compression and progressive retrieval of 3D models.
The progressive retrieval enables a low-quality
rendering of a 3D model quickly from the first few
signatures with improving quality as more data
(signatures) is received. In (anan2002) we described
the details of the surface signatures and how we could
use them to reconstruct 3D models using the inverse
signature transform. Being able to reconstruct models
from signatures provides more accurate rendering of the
3D object the more signatures are used. Even using

one signature is often sufficient to identify the shape of
the 3D model. Details on experiments analysing the
trade-off between the size of the model, retrieval time of
full object, and signature will be presented in a future
paper. In this paper we present details of a browsing
service that uses this similarity measure to group similar
models. Our objective is to provide a mechanism for a
user to effectively browse collections of 3D models.
Since it is difficult for a user to view many models at
once, we group models into clusters based on their
shape, where each cluster is represented by a key
model. When browsing, a user initially sees a view of
key models. By selecting a key model, the user can
browse the selected cluster and repeat the process till a
model has been found (if there is one).

The rest of this paper is organized as follows;
section 2 presents a brief background on signature
computation and the overall architecture of the 3D
Digital Library (3DLIB). Section 3 describes the
browsing service, and we provide results from
experimentation on a test bed collection in Section 4.
Finally, we present a discussion on future work in
section 5.

2 Background
In Figure 1 we summarize the architecture of 3DLIB as
it was described in (anan02). It consists of the following
modules:

Repository: a database that is divided into two parts;
one for storing metadata and signatures of 3D models,
and the other for storing features for the similarity
search as explained below. Original models can be
reconstructed from the signatures.

Publishing service: a service used to upload 3D
models and their metadata to the repository. The
publishing service accepts a 3D model from the client,
determines anchor points (points at which signatures are
calculated), computes the signatures and uploads the
signatures along with the metadata of the 3D models to
the repository.

Progressive retrieval service: a streaming service to
progressively retrieve the 3D model. The compression
format has the characteristic that not all data are
required for an initial view of the model. This makes the
compression technique more amenable to progressive
retrieval, and as well as for fault-tolerance in network
applications. In other words, the response time to view

Proceedings of the 5th Russian Conference on Digital
Libraries RCDL2003, St.-Petersburg, Russia, 2003

the initial model is smaller. The initial display is refined
with time as more data arrives. In addition, if some data
frames are lost, the end user will still be able to
visualize the model and interact with it, though with
lower resolution.

Search and discovery service: A simple search
service is used to search the metadata for keywords, for
example, a search can be initiated to retrieve an object

with the word ‘chair’ in the model description. A more
advanced search service is also available that can
retrieve models that are similar (in shape) to a given
model.

We implemented the repository and simple search
services based on the architecture of the Java servlet-
based Arc (http://arc.cs.odu.edu) (Liu2001) with an
Oracle database at the backend.

Metadata

Signatures

3D Repository

O
ra

cl
e

Se
rv

er

Anchor Point
Extraction and

Normal Direction
Calculation

Signature
Generation

Upload
ServiceClient

3D Model

Publishing Service

WWW Client

Metadata
Search
Server

Local Cache

Metadata

Anchor Point
Extraction and

Normal Direction
Calculation

Signature
Generation

Similarity
Matching
Engine

3D Model

Local Cache

Search & Discovery

3D Viewer Aggregator
(Stream Manager)

Signature Retrieval
Service

Progressive Retrieval Service

Figure 1. Digital Library Framework

The representation of the 3D models is a sequence

of 2D images called surface signatures. Details about
the computation of signatures and derivations of inverse
signature transform (that is used in reconstructing the
3D models) can be found in anan02. For completeness
we will summarize the key points in the following
subsection.

2.1 Signature Computation

The signature image is generated as follows: For each
point A, defined by its 3D coordinates and normal ,
each other point P

→

N
i on the surface can be related to N by

two parameters as shown in :
(1) the distance ii PAd −= and

(2) the angle
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−
−

=

→

−

i

i
i PA

PAN).(cos 1α .

2.2 Inverse Signature (Signature Transform Basis)

The point A at which the signature image is calculated
is called the anchor point for that signature. Let us
define the normal at point A to be . A point S on the
signature image has distance d from A and angle α with
respect to the normal . In order to get the reverse
mapping of the point S and get the corresponding point
in the 3D domain, we must locate all points that have
distance d from the anchor A and angle α with respect

to the normal . All points that have distance d from
the anchor A lie on the surface of a sphere that has
center A and has radius d. On the other hand all points
that have angle α lie on the surface of a cone that has its
apex at the point A, have a normal at the apex and
have angle α with the normal.

→

N

→

N

→

N

→

N

The intersection of the cone and the sphere is a circle
that has radius d sin (α), is orthogonal to the normal ,
and its center has distance d cos (α) from the anchor A .
This means that each point on this circle represents the
inverse mapping of a single point in the 2D signature

→

N

http://arc.cs.odu.edu/

image. In other words, in the 3D domain any point that
lies on this circle will map its signature in the 2D
domain to a single point S. This means that the mapping
from the 3D domain to the 2D signature image is many-
to-one. Details for the derivation of the inverse
signature equations can be found in anan2002.

2.3 Reconstruction

The decompression algorithm is as follows:
• For each component of the 3D object

representation, do the following:
• Create a (m*l*n) grid of Voxels. Where m, l,

and n are determined according to the
available memory storage and to the required
granularity in the directions of X, Y and Z
respectively.

• Define a mapping from the grid coordinates to
3D coordinates.

• Decompress the 2D-surface signature image
• For each non-zero pixel in the 2D-surface

signature image
• compute the equation of the inverse

signature circle
• put the circle as a set of Voxels in the 3D

grid
• Find the intersection of all 3D grids. This will

be the decompressed vertices of the 3D object

3 Browsing and Navigation Service
A difficult problem even in 2D collections is to provide
the searcher with mechanisms to explore the collection
in a controlled manner. One major approach is to cluster
images according to some similarity metric and present
the user with the choice of providing a sample image or
traversing a hierarchical set of clusters. We have
extended both approaches to 3DLIB and will describe in
this section the hierarchical approach. The three factors
to be considered in designing a browsing and navigation
service are: how many objects can the viewer absorb to
make a selection (N); how do we define similarity (sim);
and how do we select a representative object from a
cluster (key). We cluster the collections using sim and
the constraint that the average cluster size should be N.
For each cluster select a key and iteratively apply the
algorithm to the collections of keys until only one
cluster is left. Navigation starts at the top and the user
selects the most appropriate key model shown and
traverses recursively down (with possible back-ups)
until the desired model has been found or the search
fails.

Clustering methods can be divided into two basic
types (Kaufman90): partitional and hierarchical
clustering. Partitional clustering attempts to directly
decompose the data set into a set of disjoint clusters.
The criterion function that the clustering algorithm tries

to minimize may emphasize the local or the global
structure of the data. The global criteria involve
minimizing some measure of dissimilarity in the
samples within each cluster, while maximizing the
dissimilarity of different clusters. Partitional techniques
include square error methods, mixture decomposition,
graph theory, nearest neighbor, and fuzzy clustering. K-
means algorithm is the most common partioning
algorithm where the clustering strategy is based on the
square root error criteria. It starts with a randomly
selected initial partition and keeps reassigning the
patterns to clusters based on the similarity between the
pattern and the cluster centers until it meets a
convergence [1]. This algorithm has been applied to
large scale data sets due to the linearity of its time
complexity. However, it can converge to a local
minimum if the initial partition is not chosen carefully.
Hierarchical clustering algorithms produce a nested
series of partitions based on a criterion for merging or
splitting clusters based on similarity [1]. The end result
of the algorithm is a tree of clusters called a
dendrogram, which shows how the clusters are related.
By cutting the dendrogram at a desired level a
clustering of the data items into disjoint groups is
obtained. Hierarchical algorithms can be further divided
into divisive (top down) and agglomerative (bottom up).
Divisive algorithms starts with a single cluster
containing all objects, and then successively splits
resulting clusters until only clusters of individual
objects remain. Agglomerative hierarchical clustering
on the other hand starts with every single object in a
single cluster. Then in every successive iteration, it
agglomerates (merges) the closest pair of clusters by
satisfying some similarity criteria, until all of the data is
in one cluster. We chose to use agglomerative clustering
technique called direct join (Jain 1999) because it
allows us to decide the number of clusters that are
generated besides it is fast and simple.

A fundamental issue to any clustering algorithm is
how to compute the similarity. For this purpose, we
computed the similarity of two 3D models based on the
similarity of their signatures using Equation (1).

∑∑ ∑
=

= =
−=

7

1
0 0

2
,,,)),(),((

7
1

s

Height

m

Width

l jsisji lmPlmPSim

--------------------- (1)
Where

7 is the number of signatures used in computing
similarity for each model

),(, lmP is is the value for pixel that has coordinates
m,l in signature s.

This similarity measure is computed based on the
signature images of the 3D models, which we have
shown earlier that they can be used to reconstruct the
3D models. Based on this similarity measure, we used

a direct join clustering algorithm to cluster 3D models
as follows:

• Compute the similarity between each two
models.

• Place each model in its own cluster.
• While (Number of Clusters > N) where N is

the desired number of clusters
• Merge the two closest clusters

Selecting the number of clusters (N) is a key issue in

this algorithm. This number should be as small as
possible because only keys of these clusters are used in
the top level browsing of the model. The smaller this
number gets, the user will view a small number of keys.
However, we do not want it to be too small to have un-
correlated models grouped together. In the next section
we will show some results of applying this clustering
technique with varying number of clusters.

In section 4 we describe experiments to study the
effect of varying N. Note that a smaller value of N (few
cluster) may lead to the inclusion of two not-so-similar
models in the same cluster. To allow us to study this
trade-off quantifiably, we introduce two error metrics:
the intra cluster error and the inter cluster error. The
first measures the average distance (similarity) of any
two objects in a cluster and the second the average
distance of objects in different clusters. The first we
obviously try to minimize and the second we want to
maximize.

Intra Cluster Error: Clusters should be formulated
such that models in the same clusters are as close
together as possible. In this case we use the following
equation to compute the error:

∑ ∑ ∑
= = =

−=
N

i

m

j

m

k
kj

i

i i

Sim
mN

erErrorIntraClust
1 1 1

,2)1(11

----------------- (2)
Where

N is the number of clusters,

im is the number of member of cluster I,

kjSim , is the similarity value between model j and
model k.

Inter Cluster Error: Clusters should be formulated such
that models in different clusters are as far from each
other as possible. In this case we use the following
equation to compute the error:

∑ ∑ ∑ ∑
∑= =

≠

= =
≠

=

=
N

i

m

j

ihN

h

m

k
kjipN

p
pi

i h

Sim
mmN

erErrorInterClust
1 1

,

1 1
,,

1

11

----------------- (3)
N is the number of clusters,

im is the number of member of cluster I,

kjSim , is the similarity value between model j and
model k.

4 Experimental Results
We used a test bed that contained about 350 3D-models.
Some of the models were designed using 3D studio.
Others were collected from the Internet from different
archives such as 3D café (http://www.3Dcafe.com).

Figure 2 shows examples of contents of clusters.
The right panel shows a partial list of the keys of the
clusters (this will be replaced later by graphical view of
the keys). The clusters in Figure 2.(a) and Figure 2.(b)
contain models that subjectively are indeed similar.

However, in clusters such as those in Figure 2.(c)
and Figure 2.(d) some models that are different in shape
or category. This is due to the fact that isolating these
models into separate clusters will increase the number
of clusters used and in our approach we have fixed the
numbers of clusters in advance. Also some models
have different granularity in their representation (some
models might be using a high density number of
polygons to represent then others might use a very small
number which affects the accuracy of computing the
similarities for the models.

http://www.3dcafe.com/

(a)

(b)

(c)

(d)

Figure 2. Examples of Clusters

Performing the clustering of a collection is a time

consuming process and can not be done in real time to
allow a user to change N on the fly. However we can
produce a few clusters in advance and give the user the
choice of the ones available. This will need updating as
new models are published and change the clustering (we
need to satisfy the size constraint). In figure 3 we show
the relation of the inter and intra cluster errors for a
particular collection for varying N. This kind of graph
can be useful to the user in making a choice of N, given
that the user is aware of her own capacity for handling a
number of 3D objects simultaneously. Since the extra
cluster error reaches a limit at around 30 clusters, we
have computed a number of data points between 1 and
30 to show the detail of the curves. In figure 3, we also
show an overall error that is the combination of the two:

overall error = 0.5*Intra Cluster Error+ 0.5*Inter
Cluster error (different weight can be used according to
the significance of these errors for the application). To
allow for the influence of the models in the collection
(clearly the error is dependent on the specific objects in
the collection), we have repeated the experiment for
random sub collections of the test collections (shown in
Figures 4 and 5).

The directions of the curves is intuitive, the shape is
not. Our current belief is that this is directly dependent
on the nature of the collection and less on the specific
clustering algorithm we use. As our test bed collection
grows we will be able to experimentally describe the
changing nature of these graphs.

Clustering Erros

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5 10 15 20 25 30 35

Number of Clusters

E
rr

o
r Series1

Series2
Series3

Figure 3. Clustering Erros

Clustering Erros

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25 30 35

Number of Clusters

E
rr

o
r Series1

Series2
Series3

Figure 4. Clustering Error for Random Clusters

Clustering Erros

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25

Number of Clusters

E
rr

o
r Series1

Series2
Series3

Figure 5. Clustering Error for Random Clusters

5 Summary and Future Work
In this paper we presented a digital library framework
that has services to support storage, retrieval and
discovery of 3D models. We described a navigation
service based on hierarchical clustering of similar 3D
models. In this paper we used shape similarity to
compute the clusters of the 3D models used in the
navigation service.

In the future we are planning to use additional
similarity measure that combine the shape similarity
along with other metadata similarity measures (e.g.
using the text description of the 3D model). We are also
planning to use clustering of similar 3D models to speed
up the similarity search process using the same
methodology that we implemented for browsing the 3D
models. This will be done by computing the similarity
of models with only the representative “key” model of a
cluster instead of computing the similarity with all
members of the cluster.

References
[1] H. Anan, K. Maly and M. Zubair, “Digital Library

Framework for Progressive Compressed 3D
Models, Proceedings of SPIE Vol. 4661, January
2002.

[2] H. Anan and S. Yamany, “Free-Form 3D Objects
Compression using Surface Signature”,
Proceedings of SPIE Vol. 4197, November 2000.

[3] R. Campbell and P. Flynn. A survey of free-form
objects representation and recognition techniques.
CVIU, 81(2):166–210, 2001.

[4] C. S. Chua and R, Jarvis, “Point Signatures: A new
representation for 3D object recognition”,
International Journal of Computer Vision 25(1), pp.
63-85, 1997.

[5] A. Johnson and M. Herbert, “Surface Matching for
Object Recognition in Complex three-dimensional
scenes”, Image and Vision Computing 16, pp. 635-
651, 1998.

[6] A. K. Jain and R. C. Dubes, Algorithms for
Clustering Data, Prentice-Hall advanced reference
series. Prentice-Hall, Inc., 1988.

[7] A. K. Jain, M. N. Murty and P. J. Flynn, “Data
Clustering: A Review”, ACM Computing Surveys,
Vol. 31, No. 3, September 1999.

[8] L. Kaufman and P. J. Rousseeuw, Finding Groups
in Data. An Introduction to Cluster Analysis, John
Wiley, 1990.

[9] K. Maly, M. Zubair, H. Anan, D. Tan, and Y.
Zhang, ”Scalable Digital Libraries based on
NCSTRL/Dienst”, ECDL2000, pp.168-180,
Lisbon, September 2000.

[10] K. Maly, M. Zubair, M. Nelson, X. Liu, H. Anan,
J. Gao, J. Tang, and Y. Zhao “Archon - A Digital
Library that Federates Physics Collections”, DC
2002, Florence, October 2002.

[11] X. Liu, K. Maly, M. Zubair, and M. L. Nelson,
“Arc - An OAI Service Provider”, JCDL2001,

[12] X. Liu, K. Maly, M. Zubair, and M. L. Nelson,
“Arc - An OAI Service Provider for Digital Library
Federation”, D-Lib Magazine 7(4), April 2001.

[13] F. Stein and G. Medioni, “Structural Indexing:
Efficient 3D Object Recognition”, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 14(2), pp. 125-145, 1992.

