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Abstract 
Traditional digital libraries have proved to 
work well with one-dimensional data such as 
reports and two-dimensional data such as 
images. However, handling three-dimensional 
(3D) data in digital libraries is relatively new 
and faces many challenges such as: efficient 
storage, fast retrieval, and a user-friendly 
search and discovery process.   We have 
previously developed a prototype for a digital 
library framework for 3D models (3DLIB) that 
supports compressed storage, along with 
progressive retrieval of 3D models. In addition, 
the prototype supports search and discovery 
services that are tuned for 3-D models. In this 
paper we introduce a new service to browse 
large number of 3D models based on their 
shapes. For this we develop a clustering 
algorithm based on a similarity measure to 
group similar models. We present results of 
using our browsing scheme on a test bed 
digital library.  

1 Introduction 
Recently there have been rapid improvements in 
modelling, acquiring, and visualizing of 3D models.  As 
a result, the volume of 3D models available in digital 
form is rapidly growing, which is creating a need for a 
digital library to manage publishing, storing, and 
discovering of 3D models.  In (anan02) we described a 
digital library framework (3DLIB) that manages the 
storage, retrieval and discovery of 3D models. In this 
paper, we introduced signature transform of a 3D model 
and illustrated how to use this representation in 
compression and progressive retrieval of 3D models. 
The progressive retrieval enables a low-quality 
rendering of a 3D model quickly from the first few 
signatures with improving quality as more data 
(signatures) is received.  In (anan2002) we described 
the details of the surface signatures and how we could 
use them to reconstruct 3D models using the inverse 
signature transform.  Being able to reconstruct models 
from signatures provides more accurate rendering of the 
3D object the more signatures are used.   Even using 

one signature is often sufficient to identify the shape of 
the 3D model. Details on experiments analysing the 
trade-off between the size of the model, retrieval time of 
full object, and signature will be presented in a future 
paper. In this paper we present details of a browsing 
service that uses this similarity measure to group similar 
models. Our objective is to provide a mechanism for a 
user to effectively browse collections of 3D models.  
Since it is difficult for a user to view many models at 
once, we group models into clusters based on their 
shape, where each cluster is represented by a key 
model. When browsing, a user initially sees a view of 
key models. By selecting a key model, the user can 
browse the selected cluster and repeat the process till a 
model has been found (if there is one).   

The rest of this paper is organized as follows; 
section 2 presents a brief background on signature 
computation and the overall architecture of the 3D 
Digital Library (3DLIB). Section 3 describes the 
browsing service, and we provide results from 
experimentation on a test bed collection in Section 4. 
Finally, we present a discussion on future work in 
section 5.  

2 Background 
In Figure 1 we summarize the architecture of 3DLIB as 
it was described in (anan02). It consists of the following 
modules: 

Repository: a database that is divided into two parts; 
one for storing metadata and signatures of 3D models, 
and the other for storing features for the similarity 
search as explained below.  Original models can be 
reconstructed from the signatures. 

Publishing service: a service used to upload 3D 
models and their metadata to the repository. The 
publishing service accepts a 3D model from the client, 
determines anchor points (points at which signatures are 
calculated), computes the signatures and uploads the 
signatures along with the metadata of the 3D models to 
the repository. 

Progressive retrieval service: a streaming service to 
progressively retrieve the 3D model. The compression 
format has the characteristic that not all data are 
required for an initial view of the model. This makes the 
compression technique more amenable to progressive 
retrieval, and as well as for fault-tolerance in network 
applications.  In other words, the response time to view  
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the initial model is smaller. The initial display is refined 
with time as more data arrives. In addition, if some data 
frames are lost, the end user will still be able to 
visualize the model and interact with it, though with 
lower resolution. 

Search and discovery service: A simple search 
service is used to search the metadata for keywords, for 
example, a search can be initiated to retrieve an object 

with the word ‘chair’ in the model description. A more 
advanced search service is also available that can 
retrieve models that are similar (in shape) to a given 
model. 

We implemented the repository and simple search 
services based on the architecture of the Java servlet-
based Arc (http://arc.cs.odu.edu) (Liu2001) with an 
Oracle database at the backend.  
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Figure 1. Digital Library Framework 

 
The representation of the 3D models is a sequence 

of 2D images called surface signatures. Details about 
the computation of signatures and derivations of inverse 
signature transform (that is used in reconstructing the 
3D models) can be found in anan02.  For completeness 
we will summarize the key points in the following 
subsection. 

 

2.1 Signature Computation 

The signature image is generated as follows: For each 
point A, defined by its 3D coordinates and normal , 
each other point P
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2.2 Inverse Signature (Signature Transform Basis) 

The point A at which the signature image is calculated 
is called the anchor point for that signature. Let us 
define the normal at point A to be . A point S on the 
signature image has distance d from A and angle α with 
respect to the normal  . In order to get the reverse 
mapping of the point S and get the corresponding point 
in the 3D domain, we must locate all points that have 
distance d from the anchor A and angle α with respect 

to the normal .  All points that have distance d from 
the anchor A lie on the surface of a sphere that has 
center A and has radius d. On the other hand all points 
that have angle α lie on the surface of a cone that has its 
apex at the point A, have a normal  at the apex and 
have angle α with the normal. 

→

N

→

N

→

N

→

N

The intersection of the cone and the sphere is a circle 
that has radius d sin (α), is orthogonal to the normal , 
and its center has distance d cos (α) from the anchor A . 
This means that each point on this circle represents the 
inverse mapping of a single point in the 2D signature 

→

N
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image. In other words, in the 3D domain any point that 
lies on this circle will map its signature in the 2D 
domain to a single point S. This means that the mapping 
from the 3D domain to the 2D signature image is many-
to-one. Details for the derivation of the inverse 
signature equations can be found in anan2002. 
 

2.3 Reconstruction 

The decompression algorithm is as follows: 
• For each component of the 3D object 

representation, do the following: 
• Create a (m*l*n) grid of Voxels. Where m, l, 

and n are determined according to the 
available memory storage and to the required 
granularity in the directions of X, Y and Z 
respectively. 

• Define a mapping from the grid coordinates to 
3D coordinates. 

• Decompress the 2D-surface signature image 
• For each non-zero pixel in the 2D-surface 

signature image 
• compute the equation of the inverse 

signature circle 
• put the circle as a set of Voxels in the 3D 

grid 
• Find the intersection of all 3D grids. This will 

be the decompressed vertices of the 3D object 

 

3 Browsing and Navigation Service 
A difficult problem even in 2D collections is to provide 
the searcher with mechanisms to explore the collection 
in a controlled manner. One major approach is to cluster 
images according to some similarity metric and present 
the user with the choice of providing a sample image or 
traversing a hierarchical set of clusters. We have 
extended both approaches to 3DLIB and will describe in 
this section the hierarchical approach. The three factors 
to be considered in designing a browsing and navigation 
service are: how many objects can the viewer absorb to 
make a selection (N); how do we define similarity (sim); 
and how do we select a representative object from a 
cluster (key).   We cluster the collections using sim and 
the constraint that the average cluster size should be N. 
For each cluster select a key and iteratively apply the 
algorithm to the collections of keys until only one 
cluster is left. Navigation starts at the top and the user 
selects the most appropriate key model shown and 
traverses recursively down (with possible back-ups) 
until the desired model has been found or the search 
fails. 

Clustering methods can be divided into two basic 
types (Kaufman90): partitional and hierarchical 
clustering. Partitional clustering attempts to directly 
decompose the data set into a set of disjoint clusters. 
The criterion function that the clustering algorithm tries 

to minimize may emphasize the local or the global 
structure of the data. The global criteria involve 
minimizing some measure of dissimilarity in the 
samples within each cluster, while maximizing the 
dissimilarity of different clusters. Partitional techniques 
include square error methods, mixture decomposition, 
graph theory, nearest neighbor, and fuzzy clustering. K-
means algorithm is the most common partioning 
algorithm where the clustering strategy is based on the 
square root error criteria. It starts with a randomly 
selected initial partition and keeps reassigning the 
patterns to clusters based on the similarity between the 
pattern and the cluster centers until it meets a 
convergence [1]. This algorithm has been applied to 
large scale data sets due to the linearity of its time 
complexity. However, it can converge to a local 
minimum if the initial partition is not chosen carefully. 
Hierarchical clustering algorithms produce a nested 
series of partitions based on a criterion for merging or 
splitting clusters based on similarity [1]. The end result 
of the algorithm is a tree of clusters called a 
dendrogram, which shows how the clusters are related. 
By cutting the dendrogram at a desired level a 
clustering of the data items into disjoint groups is 
obtained. Hierarchical algorithms can be further divided 
into divisive (top down) and agglomerative (bottom up). 
Divisive algorithms starts with a single cluster 
containing all objects, and then successively splits 
resulting clusters until only clusters of individual 
objects remain. Agglomerative hierarchical clustering 
on the other hand starts with every single object in a 
single cluster. Then in every successive iteration, it 
agglomerates (merges) the closest pair of clusters by 
satisfying some similarity criteria, until all of the data is 
in one cluster. We chose to use agglomerative clustering 
technique called direct join (Jain 1999) because it 
allows us to decide the number of clusters that are 
generated besides it is fast and simple.  
 

A fundamental issue to any clustering algorithm is 
how to compute the similarity. For this purpose, we 
computed the similarity of two 3D models based on the 
similarity of their signatures using Equation (1).   
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Where 

7 is the number of signatures used in computing 
similarity for each model 

),(, lmP is is the value for pixel that has coordinates 
m,l in signature s. 
 

This similarity measure is computed based on the 
signature images of the 3D models, which we have 
shown earlier that they can be used to reconstruct the 
3D models.  Based on this similarity measure, we used 



a direct join clustering algorithm to cluster 3D models 
as follows: 

• Compute the similarity between each two 
models. 

• Place each model in its own cluster. 
• While (Number of  Clusters > N) where N  is 

the desired number of clusters 
• Merge the two closest clusters 

 
Selecting the number of clusters (N) is a key issue in 

this algorithm. This number should be as small as 
possible because only keys of these clusters are used in 
the top level browsing of the model. The smaller this 
number gets, the user will view a small number of keys. 
However, we do not want it to be too small to have un-
correlated models grouped together.  In the next section 
we will show some results of applying this clustering 
technique with varying number of clusters.  

In section 4 we describe experiments to study the 
effect of varying N. Note that a smaller value of  N (few 
cluster) may lead to the inclusion of two not-so-similar 
models in the same cluster.  To allow us to study this 
trade-off quantifiably, we introduce two error metrics: 
the intra cluster error and the inter cluster error. The 
first measures the average distance (similarity) of any 
two objects in a cluster and the second the average 
distance of objects in different clusters. The first we 
obviously try to minimize and the second we want to 
maximize. 

  
Intra Cluster Error: Clusters should be formulated 
such that models in the same clusters are as close 
together as possible.  In this case we use the following 
equation to compute the error: 
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Where  

N is the number of clusters, 

im  is the number of member of cluster I, 

kjSim ,  is the similarity value between model j and 
model k. 

 
Inter Cluster Error: Clusters should be formulated such 
that models in different clusters are as far from each 
other as possible. In this case we use the following 
equation to compute the error: 
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N is the number of clusters, 

im  is the number of member of cluster I, 

kjSim ,  is the similarity value between model j and 
model k. 

4 Experimental Results 
We used a test bed that contained about 350 3D-models. 
Some of the models were designed using 3D studio. 
Others were collected from the Internet from different 
archives such as 3D café (http://www.3Dcafe.com).   

Figure 2 shows examples of contents of clusters. 
The right panel shows a partial list of the keys of the 
clusters (this will be replaced later by graphical view of 
the keys). The clusters in Figure 2.(a) and Figure 2.(b) 
contain models that subjectively are indeed similar.  

However, in clusters such as those in Figure 2.(c) 
and Figure 2.(d) some models that are different in shape 
or category. This is due to the fact that isolating these 
models into separate clusters will increase the number 
of clusters used and in our approach we have fixed the 
numbers of clusters in advance.  Also some models 
have different granularity in their representation (some 
models might be using a high density number of 
polygons to represent then others might use a very small 
number which affects the accuracy of computing the 
similarities for the models.  
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Figure 2. Examples of Clusters 



 
Performing the clustering of a collection is a time 

consuming process and can not be done in real time to 
allow a user to change N on the fly. However we can 
produce a few clusters in advance and give the user the 
choice of the ones available. This will need updating as 
new models are published and change the clustering (we 
need to satisfy the size constraint). In figure 3 we show 
the relation of the inter and intra cluster errors for a 
particular collection for varying N. This kind of graph 
can be useful to the user in making a choice of N, given 
that the user is aware of her own capacity for handling a 
number of 3D objects simultaneously. Since the extra 
cluster error reaches a limit at around 30 clusters, we 
have computed a number of data points between 1 and 
30 to show the detail of the curves. In figure 3, we also 
show an overall error that is the combination of the two: 

overall error = 0.5*Intra Cluster Error+ 0.5*Inter 
Cluster error (different weight can be used according to 
the significance of these errors for the application). To 
allow for the influence of the models in the collection 
(clearly the error is dependent on the specific objects in 
the collection), we have repeated the experiment for 
random sub collections of the test collections (shown in 
Figures 4 and 5).  

The directions of the curves is intuitive, the shape is 
not. Our current belief is that this is directly dependent 
on the nature of the collection and less on the specific 
clustering algorithm we use. As our test bed collection 
grows we will be able to experimentally describe the 
changing nature of these graphs.  
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Figure 3.  Clustering Erros 
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Figure 4. Clustering Error for Random Clusters 
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Figure 5. Clustering Error for Random Clusters 

5 Summary and Future Work 
In this paper we presented a digital library framework 
that has services to support storage, retrieval and 
discovery of 3D models. We described a navigation 
service based on hierarchical clustering of similar 3D 
models.  In this paper we used shape similarity to 
compute the clusters of the 3D models used in the 
navigation service.  

In the future we are planning to use additional 
similarity measure that combine the shape similarity 
along with other metadata similarity measures (e.g. 
using the text description of the 3D model). We are also 
planning to use clustering of similar 3D models to speed 
up the similarity search process using the same 
methodology that we implemented for browsing the 3D 
models. This will be done by computing the similarity 
of models with only the representative “key” model of a 
cluster instead of computing the similarity with all 
members of the cluster.  
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