
How Many Small Libraries Can Be a Large Library

Michael Christoffel, Guido Wojke, Max Gensthaler

Institute for Program Structures and Data Organization
University of Karlsuhe, Germany

{christof, wojke, gensth}@ipd.uka.de

Abstract
The success of the Internet has caused a
significant change in the way of literature
supply. Not only traditional libraries,
booksellers and publishing houses have begun
to enter the new digital world and offer their
services world-wide, completely new
information providers have been developed
such as digital libraries, delivery services,
citation services, and bibliographic databases.
The amount of knowledge and information
available world-wide grows every day.
However, very few people will be able to
access all the information that is available,
since the information is distributed among a
large number of computers and databases.
People need assistance to gain the whole utility
from the new situation. The idea presented in
this paper is to integrate library and
information services worldwide, so that they
build a large virtual library with different
services, offering the user a uniform access to
the system.

1 Introduction
In our modern society, information has become one of
the most important and valuable goods. Many
professions depend on the steady supply with actual
information. At the same time, the success of the
Internet has caused a significant change in the way of
literature supply. Now computers all over the world can
be linked together, and information can be distributed
and dealt over the Internet.

Many traditional libraries, booksellers and
publishing houses took the change to “go online” and
now offer their services world-wide over the Internet.
But also completely new kinds of information providers
have been developed in the recent years, such as digital
libraries, delivery services, citation services, and
bibliographic databases. The amount of knowledge and
information available world-wide grows every day.

However, very few people will be able to access all
the information that is available all over the world,

because this information is distributed among a large
number of computers and databases. The sheer number
of different libraries and information services is that
large that it is nearly not possible to survey. In general,
a person looking for information will not be able to find
the most appropriate information sources for his/her
demand.

Even if a person knows some information sources
by chance, there is no easy way to estimate and
compare them. They may differ in content, quality of
services, accessibility, and, not to forget, prices.

And also concerning a single information source, it
may be difficult to use this source for the advantage of
the user. Not only the services itself, also the user
interfaces differ, requiring a learning process for the
user, before he/she can use the source completely.
Different conditions, media formats, and language
barriers have an additional effect.

Moreover, in a typical scenario a person looking for
some information needs to access several different
information sources sequentially. This way, information
search will at least use a large amount of time. Together
with the commercialization of the Internet, information
search may also use a large amount of money.

People need assistance to gain the whole utility from
the new situation. However, every approach dealing
with this problem must face the distribution and
heterogeneity of the existing libraries and information
services. Each plan carrying together the knowledge of
the world will fail because of technical, economical,
legal, and political reasons. Also the creation of new
information services is not an alternative, as long as
these new services can not be used together with the
existing services.

Search and meta-search engines provide a way to
find services and send queries to several information
sources in parallel. However, they do not give
assistance in the evaluation and combination of services
and in the interpretation of results. Most activities in the
process of literature search and delivery still have to be
done by the user manually.

The idea presented in this paper is to integrate
different services for literature services worldwide, so
that they build a large virtual library with a manifold of
different, value-added services. This system will
provide a uniform interface to the user, which can be
adapted to his/her needs. Literature search world-wide
will be not more difficult than entering the local library.

Proceedings of the 5th Russian Conference on Digital
Libraries RCDL2003, St.-Petersburg, Russia, 2003

The work presented in this paper is supported by the
German Research Foundation (DFG) as a part of the
national German research initiative “Distributed
Processing and Delivery of Digital Documents (V3D2)”.

We continue as follows: In section 2, we want to
introduce some approaches related to our own idea of
an integration environment. In section 3, we will point
out the challenges of our approach. In section 4, we will
introduce the realization of our system and show how
we have solved the challenges. In section 5, we will
describe the architecture of our system. In section 6, we
will describe the main ideas for the implementation of
the integration system and our previous work. We
conclude the paper in section 7.

2 Related Work
There are a number of projects concerning the problem
of library integration, coming to different solutions than
we do. In this section, we want to introduce some of
these works.

The Stanford Digital Library Project aims in the
integration of autonomous distributed collections with a
central architecture. Core of the architecture is the
InfoBus where all collections are linked together and
which is implemented using CORBA. Search is based
on complete metadata catalogues and full text glossaries
of all participating collections [1]. Communication is
based on the SDLIP protocol [11]. A large set of tools
have been developed for this architecture.

The University of Michigan Digital Library aims in
the integration of collections by an infrastructure of
software agents [8]. The agent infrastructure has been
realized using CORBA. For communication, a set of
protocols have been developed which are oriented on
KQML. The main paradigm for the agent interactions
are negotiations [9]. In addition to task-specific and
independent agents such as user interface agents, task
planning agents, mediator agents, and collection
interface agents, there are also central and unique
architecture elements.

The focus of the Daffodil project is the development
of high-level search possibilities on distributed,
heterogeneous collections and information services
[10]. The Daffodil system consists of a (not distributed)
set of software agents. Inter-agent communication is
based on KQML. Additional to the user interface and
wrappers which form the interface to the collections,
there are three types of agents: tactics which perform
simple searches such as metadata and full text search,
stratagems for complex searches such as author search,
and strategies which assist in the choice of the
appropriate stratagems.

The aim of the MeDoc project was the creation of a
distributed electronic library in the field of computer
science [2]. The project underlies a layered architecture
which consists of user interfaces, brokers, and provider
interfaces. The communications betweens the layers is
done by an extension of HTTP. All documents are
supposed to be transferred to special document servers.
MeDoc supports electronic commerce features, so the

use of the system and the access to the documents can
be charged.

3 Challenges
Our aim is to build a system capable for the integration
of autonomous and heterogeneous libraries and
information sources world-wide. This aim is
accompanied with a number of challenges:

Challenge 1
The system must be scalable and extensible.

Challenge 2
Extensions of the systems must be possible for any
organization. In the long run, it will not be possible
that the system is built and maintained by one
organization only.

Challenge 3
The system must give the user a uniform access that
is adapted to his/her needs. The system has to
support users coming from all parts of the world.

Challenge 4
The independence of the information sources must
be preserved. The integration system must be
adapted to the existing information sources, not vice
versa.

Challenge 5
The system must be able operate in a distributed
environment, crossing borders between operating
systems and hardware platforms.

Challenge 6
The system must be robust. A dropout of one part of
the system must not stun the rest of the system.

Challenge 7
The system must be prepared for electronic
commerce transactions.

Challenge 8
The system must defend itself against any misuse.

In the following section, we will describe how we have
solved these challengers. Due to the limited length of
this paper, we cannot describe our solution in detail. In
this paper, we will describe our main ideas and give a
sketch on the architecture and the implementation.

4 Realization
In this section, we give an overview on the realization
of our system and the way we have solved the
challenges.

The main paradigm of our work is the idea of an
open environment. For the participants – the
information providers and the potential users of the
system – the open environment appears as a black box:
There are adapted interfaces that allow interaction with
the environment, but they do not need to have insight in
the internals of the environment.

The environment is inhabited by a society of
independent but communicative software agents. More

concretely, the environment consists of these agents
only; there is no underlying middleware and no
elements other than the agents.

Each agent speaks and understands a certain set of
messages. For simplification, each agent is assigned to
an agent type, which describes the behavior of the
agent. If an agent knows the type of its communication
partner, it is able to communicate in the correct way.
The knowledge about the concrete implementation of an
agent is not necessary.

There is no rule that prescribes which agents are
inside the environment at one point of time. In fact,
agents are free to enter and leave the environment on
their own decision. As a consequence of this, it is not
possible to define the relations among the agents in
advance. An agent that enters the environment does not
know which other agents it will find. Hence, it must
learn about the environment and find communication
partners in order to fulfill its task. The behavior of the
agents in the environment can be described under the
metaphor of an open market [4]. Information providers
and users act as providers and customers in this market.

It is obvious that the open environment is scalable
and extensible in a high grade. The learning behavior of
the agents allows them to adapt to changes in the
environment. Moreover, it is possible to add new agents
at runtime. It is even possible to create completely new
agent types after the system has been launched; the
functionality of the existing agents will not be touched.
Agents designed by different organizations will work
together. This way, the open environment meets
challenge 1 and 2. Instead of adding new agents, it is
possible to upgrade existing agents. Since the
knowledge of the agent can be preserved during the
upgrade, the agent does not have to repeat the learning
process of its processor.

There are special agents that act as interfaces to
customers and providers. These interfaces can be
adapted to the needs of the market participants. For
each customer (the user of the virtual library), the
information system provides the view of a personal
workplace. Not only user profiles and presets can be
stored for each customer, but also documents,
references, and annotations. This clearly meets
challenge 3. For the provider side interface, we can
even go one step further. It is possible to install a
separate agent for each provider. This agent can be
tailored for this provider (challenge 4).

The communication among the agents in the
environment is based on Web services. This way, we do
not need any additional middleware for communication,
and we can cross the borders of operating systems and
hardware platforms, and, equally important, firewalls.
This meets challenge 5.

Due to the open system, it is possible (and likely) to
have several agents of the same type which can replace
each other. This creates a high level of redundancy and
robustness and meets challenge 6. It is also possible to
create identical copies of the same agents that share the
same databases. This way, there is a good change that
there is a perfect replacement if an agent failed

temporarily or permanently. This strategy does not only
increase the robustness of the system, it also can be
used for load balancing, because queries can be
distributed among identical agents according to the
actual load.

An important issue of the integration platform is
security. An agent may decide to send a message
encrypted using SSL. This way it is possible to transmit
private data such as credit card numbers or passwords.
In addition to encryption, the system also uses digital
signatures in order to prove the identity of a customer
and uncover manipulations. The same procedure can be
used to certificate the identity and the quality of the
agents itself. Every agent can decide to decline
cooperation with other agents or customers it does not
trust. This way, our system is able to meet challenges 7
and 8.

5 Architecture
In this section, we will discuss the architecture of the
integration environment we developed and which bases
on the ideas described above. We will first discuss a
simplified approach which shows the most important
agent types. Then we will discuss these agent types in a
little bit more details Afterwards we will present the
extensions necessary for an environment capable for
electronic commerce transactions.

5.1 Overview

For the integration system, we use an instance of an
open agent environment which we refer to as the
UniCats1 environment [7].

Figure 1 contains a simplified view on the UniCats
environment, showing the most important agent types.
Customer Interface Agents (CIA) provide the customer-
side interfaces of the system. They have connections to
customer agents (CA) which act as the representatives
of the customers in the system and provide for each
customer a personal workplace. In order to perform
queries in behalf of the customers, they can ask a
Provider Selection Agents (PSA) for recommendations
about those providers suitable as sources for the
performance of the queries. The Customer Agents sends
a query together with a list of the selected providers to
an Integration Agent (IA). The Integration Agent sends
the query in parallel to the Provider Agents (PA) that
act as the representatives of the providers. The Provider
Agents translate the incoming query into the native
protocol of the provider and re-translates the delivered
results into the common protocol. The Integration
Agent collects the incoming results from the different
information sources and integrates them to one result
list. The final result list is sent back to the Customer
Agent, which can present the results to the customer
with the help of the Customer Interface Agent.

It is important to consider that this is only an
example of possible interactions. A more complex

1 a Universal Integration of Catalogues based on an
Agent-supported Trading and Wrapping System

providers

Figure 1: The UniCats environment

provider agents PA PA PA PA PA PA PA PA

customers

U
ni

C
at

s e
nv

iro
nm

en
t

customer interface agents

customer agents

provider selection agents

integration agents

CIA CIA CIA CIA CIA

CA CA

PSA PSA PSA

IA IA IA

scenario may contain many customers who operate with
the system at the same time, the combination of several
queries (including order and delivery) and involve more
agents of different agent types. In fact, the agent is not
able make any concrete plans for task execution in
advance, because it is not known which agents will be
present in the environment at a given point of time and
which communication partners the agents will have.

We now want to take a closer look on the five agent
types shown in Figure 1.

5.2 Customer Interface Agents

Customer Interface Agents (CIA) are the interfaces to
the customers. They are the customers’ only connection
to the integration system, hiding the internal structure of
the UniCats environment. Following the Model View
Controller Paradigm, Customer Interface Agents have
to designed independent from the further layers of data
processing; they are restricted in user interaction and
data presentation. They have to make use of the
standardized interfaces to the other agents.

There may be different customer interface agents,
and they may differ in the look and feel they provide to
the customers. This way, the customers can choose their
favorite interfaces. Most likely, customers will choose
different customer interface agents in different situation.
E.g., they may use a powerful Customer Interface Agent
which is fully adapted to their needs at their workplace,
but choose a more lightweight one when they are on
business travel and have to access the system with a
mobile device.

Customer Interface Agents can be used to integrate
the existing library systems of the tradition libraries
with the UniCats environment, so that the integration

platform (and the connected sources) can be used from
the library system. Doing this, it is only necessary to
implement a new Customer Interface Agent that is
connected with the library system.

Until now, we have developed customer interfaces
using different technologies such as graphical Java
application, HTML, WAP, and virtual reality [5].

In order to adapt the interface to the flavor of the
customer, Customer Interface Agents store the setup of
the customers and the data needed to determine the
individual look and feel. These data encompass colors
and other details for the design of the customer interface
and also the favorite natural language of the customer.
As soon as the Customer Interface Agent knows the
identity of a customer who logged in, the agent can
restore the look and feel of this customer.

5.3 Customer Agents

Customer Agents (CA) are the representatives of the
customers in the system. Customers can use any
Customer Interface Agent to access their favorite
Customer Agent. Even if the change the interface, they
still can work with the same Customer Agent. But it is
also possible to change the Customer Agent and still use
the same Customer Interface Agent.

Customer interface agents provide a personal
workplace for the customers. In their personal
workplace, customers can hold queries, result lists,
bibliographic data, and also (electronic) documents
itself. It is also possible to make annotations and share
data with other customers in the system. When
customers leave the system and come back later, they
will find the personal workplace in the same state as
they have left and can immediately continue working.

Customer Agents assist the customer in the
formulization of its demands. Customer Agents hold
customer profiles with interests and preferences of the
customers gained from questionnaires and observations
of the customer behavior, and can use these date to
enrich or auto-formulate queries. Choosing the most
appropriate sources, they can make complex query
plans, where results from different kinds of queries can
be combined or mixed together. As soon as results
arrive, the Customer Agent presents them to the
customer so that the customer can work with the results,
while the Customer Agent finds more results or suggest
additional services.

Customer Agents have to assist the customer in
different states of the process of information supply,
beginning with overview searches to get an overview on
the area and reaching to order (and delivery) of
complete documents.

5.4 Provider Selection Agents

Since the dynamism of the environment, Customer
Agents will not be able to keep a permanent overview
on the information services and sources which are
available in the system Provider Selection Agents
(PSA) assist Customer Agents finding the most
appropriate services and sources. They supply Customer
Agents with ranked lists of recommendations of the
most appropriate providers for a customer’s demand,
together with additional information about the providers
[3].

In order to able to perform this task, they have to
permanently collect information about the providers
which are currently available in the system. This is not a
trivial task, since providers are free to appear and
vanish without further notice.

Provider Selection Agents may use different ways to
gain the needed market overview. The easy way is that
the providers themselves support the Provider Selection
Agent with the information. It is not irrational to
assume a friendly behavior of the providers, since the
providers have a self-interest in being recommended.
However, Provider Selection Agents should not rely on
the friendly behavior of the providers and not trust the
received information completely. At least they have to
check whether the provider profiles are complete,
consistent, and up-to-date.

Alternative ways to gain information about the
providers are test-query and the analysis of the feedback
of the Customer Agent.

5.5 Integration Agents

While it is possible that the Customer Agent will
address some services or sources in a sequence (e.g., if
the output of the first provider is used as input for the
second), in most cases a set of providers can be
addresses in parallel. Integration Agents (IA) assist
Customer Agents in parallel queries. They forward each
query to several providers (or provider agents,
respectively) in parallel, collect the incoming results
and integrate them to one result list [12]. Result

integration includes the detection and elimination and
the combination and completion of attributes.

It is not the best strategy for the Integration Agent to
wait until all providers give a response, because this
could take some time, and the customer had to wait long
for an answer. A better strategy is incremental result
integration. Incremental Result Integration means that
results are sent back to the customer agent as soon as
they arrive. When new results arrive, the Integration
Agent merges these with the result list already sent to
the Customer Agent. The customer receives the answer
to a query as soon as possible and can work with the
results. With the time, new results and attributes will be
added, until all sources have answered. If there is a
failure (e.g., one provider does not answer at all), the
customer will not notice this, as long as there are
alternative sources. If alterative sources are not present,
the Customer Agent could ask the Provider Selection
Agent.

5.6 Provider Agents

Provider agents are the representatives of the providers
to the system. They are responsible for the syntactical
and semantical homogenization of the different kinds of
providers. In general, they translate incoming queries
into the native protocol of the provider, and re-translate
the answer. In many cases, however, a purely
syntactical translation of the query is not enough. Then
the Provider Agent must take part in the execution of a
query and apply operations such as result filtering. E.g.,
while it is possible in many library catalogues to receive
the publication year of a document, it is not possible to
query a range of year, but this can be done quite easy be
a filter operation. This way, Provider Agents can
enlarge the capacity of the query language of the
providers. Another task is the planning and the
optimization of the query execution. Since Provider
Agents are quite closely coupled to ‘their’ providers,
they should be tailored to individual providers so that
there is at least one Provider Agent for each provider.
This increases the load balance and the performance of
the system.

It is important that the independence of the
providers is guaranteed. Therefore, we can neither
demand a direct access to the provider’s database nor
any requirements for the provider’s computer system,
but use an existing interface. While it would be possible
to use any other standardized or native interface, we
concentrate our work on the Web interface of the
provider. This way, we use the information provider the
same way a human user would do. Since not only each
provider has an individual Web interface, but also this
web interface tends to be modified from time to time,
we have developed a tool for the generation and
modification of the converter, which establishes the
connection to the Web interface of the provider [6].

5.7 Extensions

Figure 1 shows a simplified view on the integration
platform. Extensions are necessary in order to maintain

a level of security in the system which is mandatory for
the practical use of the system, especially under the
consideration of an e-commerce scenario with
commercial sources.

A first step is to use encryption for the data transfer
among the agents, or – what we did – to offer different
security levels and leave the agents the choice which
security level to use for a transmission However, since
the system is completely open for providers, customers,
and agents, there is a problem of trust.

We have declared that all providers are free to enter
and leave the system and offer their services to the
public. There is a danger that this could lead to an
anarchical situation and open the door to misuse.
However, we have implemented two mechanisms to
prevent a situation without control. First, for each
provider must be at least one Provider Agent. So the
problem of trust against the provider is reduced to the
problem of trust against an agent. A Provider Agent
should never allow a provider to harm the system or a
customer. E.g., it would stop any query processing,
when cost arise higher than a given limit. Second, the
Provider Selection Agent would never recommend a
provider that has been shown as ‘bad’ in some sense.

For customers, the situation is not that easy, because
they can use any Customer Interface Agent to access the
system. So there must be a login mechanism in order to
prove their identity and authorization. This login
procedure can only be done at the Customer Interface
Agent, but the authorization should be done in a
separate agent type. Customer Authorization Agents
(CAA) store the accounts and passwords of the
customers together with information about the
privileges and rights of the customer. It is also possible
to hold digital signature of the registered customers.
There is also an anonymous guest account with limited
privileges. During login process, Customer Interface
Agents contact the Customer Authorization Agent in
order to validate the identity of the customer; but it is
also possible that other agents want to confirm the
identity of a customer. E.g., a Provider Agent might
double-check the identity of a customer before it
performs any transactions liable to charges.

While privileges and rights can be assigned to
individual customers, in real life they are often assigned
to customer organizations. A customer organization
may be a university or a company which offers some
special conditions ton their member, e.g., the free
access to a commercial database. Hence, we need an
extension of our system in order to consider customer
organization. Customer Organization Agents (COA) are
the representatives of the customer organization.
Customer organization agent can interact in the system
in behalf of their members. Whenever a Customer
Agent realizes that a customer who is member of a
customer organization could use the advantages of the
membership, it forwards the query to the Customer
Organization Agent. The Customer Organization Agent
proves the rights of the member, then performs the
query in the name of the organization.

Billing and payment is another situation where the
authorization of the customer is necessary. Billing
Agents (BA) act as mediators in commercial situations
and play a role as trusted third party in payment
procedures, while Payment Agents (PMA) are the
representatives of banks and financial institutions.

We still have the problem how to provide trust
against the agents themselves. Since the UniCats
environment is open and extensible, everyone is free to
add an agent capable to interact with other agents.
Again, there is a danger of misuse. One step is to
provide agent authorization. Therefore, agents and
groups of agents can register themselves at Agent Name
Agents (ANA) and Group Name Agents (GNA). This
way, an agent can contact the corresponding registry in
order to prove the identity of an agent. It is also possible
to use digital certificates. Of course, the idea of the
registries only works as long as an agent trusts the
agents that hold the registries.

Proving the identity of an agent is not enough. It is
also important to know the quality of an agent. This is a
difficult task, because there is no objective measure for
the quality of an agent. Agent Certificate Agents (ACA)
give certificates to agents for a limited period of time.
Certificated agents have a self-interest to keep a
standard of quality in order not to loose the certificate.
Agent Rating Agents (ARA) follow another idea. They
provide a measure of the quality of an agent which is
generated by the ratings of other agents, usually
business partners or previous business partners of the
rated agent. A third effect to hold a level of quality and
trust in the environment comes from the market itself.
Agents will avoid any further contact to agents they are
disappointed. This way, an agent must show a good
quality in order to be successful.

The UniCats environment is designed to work
without having any central instance. However, for
reasons of testing and error handling (and also scientific
reasons), it makes sense to artificially introduce a
central instance in the form of System Administration
Agents (SAA). System Administration Agents can
survey the environment or at least a part of the
environment. Therefore, the agents sent reports about
their work to the System Administration Agent. It is
clear that an agent will only report to a System
Administration Agent it trusts completely.

6 Implementation
In this section we describe our own implementation of
the architecture described in section 5.

6.1 Overview

We implemented the system using Java programming
language. This brings the advantage that our agents can
run platform-independent on most computers. There is
also a large set of free tools and packages available.
However, the development of agents does not depend
on the chosen programming language. It is also possible
to implement agents using other platforms and
languages, and it is also possible to use a mixed

Administration
Module

Figure 2: Structure of the UniCats community

Log
Control Panel

Administration
Control Panel

Communication
Module

Communication
Control Panel

Agent

Agent
Control Panel

Agent Container

External
Communication

environment. In fact, we already have implemented
some sample agents using other platforms and
programming languages, and these sample agents have
been able to interact with our Java-agents without
problems.

The communication among the agents is based on
Web services. This guarantees a very high grade of
independence of computer platforms and programming
language. As a side effect, we can bypass the firewall
problematic, where computer systems are being shut
more and more from the outside for security reasons.
Using Web services, we can use the standard TCP/IP
ports that are used for HTTP, or we can tunnel our
communication in secure channels using SSH. The
disadvantage of this method in contrast to direct
implementation in TCP/IP (which we also tried, for
testing reasons) is the need of a Web server where the
agents run.

In order to minimize this disadvantage, we have
developed the concept of agent communities. Agent
communities allow several agents to be executed in one
virtual machine, sharing the same Web server and other
resources. Of course, it is also possible to have more
than one community on one computer.

An additional advantage of the concept of agent
communities is that the communication among the
agents in the same community is very fast, so it makes
sense to put those agents with strong interrelations
together in one community. However, the concept of
the community is more a technical detail introduced to
increase efficiency. The logical interrelations among the
agents do not depend from their location. In fact, agents
can be located anywhere in the Internet, and it is even
possible for them to migrate from one community to

another. However, it is possible that the location of an
agent is restricted because of another reason, e.g., if the
agent uses a database which is accessible only from one
computer or from a computer in a special network.

There are three different ways of message
interchange among the agents:

• Agent communication works directly between
two agents.

• Group communications works an agent and a
group of agents.

• Community communication works between an
agent and a community of agents.

Communication is always synchronous, which
means that for every message a short answer must be
given instantly.

However, there is a need to establish longer dialogs
between two agents, and some messages can only be
understood in the context of older messages. Therefore,
agents can save messages which they have received or
sent under a context. Whenever a new message arrives,
the agent can prove whether the new message belongs
to a context that already exists. Additionally, the
contexts allow the agent to become aware of those
contexts where an answer of another agent is missing.

Figure 2 shows the structure of the agent
community. The community consists of the
administration module, the communication module, and
the agent container which can hold several autonomous
agents. In the following, we will discuss these
components of the agent community.

6.2 Administration Module

The administration module is the central module of the
community. When the community starts, first an
instance of the administration module is created, and
this module creates the other components of the
community and those agents that should be present at
startup. Similarly when the community terminates, the
communication module surveys shutdown process and
fists ends execution, when all components and agents
are ready for this. The administration module – and the
community, respectively – can be parameterized by
command line or by a configuration file.

By default, the administration module creates an
administration control panel which can be used by a
human administration to overview the whole
environment. From the administration control panel, it
is possible to access the other control panels in the
environment, including the control panels of the agents.
From the administration control panel, it is possible to
change the configuration of the environment, especially
it is possible to start agents.

There is also a log control panel, which can be used
to display status and error messages of the community
or the agents. It is also possible to write the log to file.

When the community terminates, the actual state of
the community can be saved to file, and also the state of
the agents that are currently in the community, can be
saved. This gives the chance to rebuild the community
in the last state after a temporary shutdown. The
configuration can also be saved automatically in short
periods, which increases the chance for a restart without
looses, if the community is terminated uncontrolled
(e.g., because of a hardware error).

6.3 Communication Module

The communication module is responsible for the
communication among the agents of the community,
and also for the communication of the agents of the
community with agents outside the community.
Communication can be encrypted or unencrypted, and it
can be agent, group, or community communication.

Agent communication is the easiest way of
communication. When the communication module
receives an agent message directed to an agent of the
own community, it simply forwards this message to the
agent by a local method call, and the answer of this
message is determined by the return value of the
method. Only in the case of an error, the
communication module has to answer the message.
There is no difference whether the sender of the
message is an agent of the own or a external
community. However, when an agent of the own
community sends an agent message (again by local
message call), the communication module has to differ
whether the receiver of the message is an agent of the
own or another community. In the first case, the
communication module calls the local receive method;
in the second case, the communication module calls the
send method of the external communication module.

The communication module does not have to know how
the message is transmitted to the receiver.

When the communication module receives a
community message, this message is forwarded to each
agent in the community. The communications module
collects the answers of the members of he community,
and then gives a common answer for the system. When
an agent of the community sends a community message,
the communication module has to differ whether the
addressed community is the own community or a
foreign community. In the first case the local receive
method is invoked; in the second case the
corresponding send method of the external
communication module.

While communities are software programs which
physically exist on one or more computers, groups only
logically exist. The members of a group can be
distributed among different communities. All members
of the group know the other members. It is possible to
register groups so that they become public. However,
only members of a group are allowed to send messages
to this group.

Agents are free to create new groups; in this case,
they are the only member of the group. They can ask
other agents to join the group, and also other agents can
apply to membership.

Group messages are treated as agent messages to
each member of the group. When the communication
module receives a group message, then this message is
addressed to only one agent in the community, and the
communication module can simply forward the
message to the agent. However, when an agent of the
community sends a group message, then this message
can have several receivers. The communication module
forwards the group message to each member of the
group (and has to differ whether the member is an agent
of the own community or an external community). The
communication module collects the answers of the
group members and creates a common answer.

There is a communication control panel which can
be used to survey the entire communication of the
community (internal and external).

6.4 Agent Container

The agent container holds the agents of the community.
It is also responsible for the creation and termination of
agents.

The creation of a new agent is not trivial, because
the agents can have different types. The type of the new
agent is given as a parameter, and the agent container
must load the correct class file for the agent.

The advantage of this dynamic behavior is that the
implementation of a new agent must be known at the
moment this agent is creates, and not earlier. This
means that it is possible to add new agent types while
the community is running. There is no need to
shutdown the system.

Each agent runs in an own thread, which gives the
agent the chance of pro-active behavior.

6.5 Agents

The basic class of an agent defines the behavior of an
agent that is common to all agent types. This encom-
passes the ability to some social behavior, e.g. contacts
with other agents and dealing with groups, and error
handling. A concrete agent type can inherit this basic
class and add additional behavior. Of course, it is also
possible to overwrite the behavior of the basic class.
Instead of the basic class, it is also possible to inherit
the class of another agent type, e.g., in order to create an
enhanced version of this agent type. For a new agent
type, only the new behavior has to be added, which
make the creation of new agent types relatively easy.

The basic class of the agent hierarchy defines four
repositories: The agent repository, the group repository,
the community repository, and the context repository.
The agent repository, the group repository, and the
community repository hold data about the agents,
groups, and communities known to the agent. The
context repository holds the active contexts of the agent.

The content of the agent, group, and community
repository are part of the agent configuration, together
with the personal data of the agent (name, address, and
type of the agent) and the name and address of the
registry, if the agent is registered. In fact, agents can
store any data in the agent configuration. The agent
configuration is saved on disk, so the agent can re-load
the configuration after a temporary shutdown or a
computer failure. The configuration also allows the
agent to move from one community to another. Short
time data such as the messages stored in the context
repository are not part of the configuration and not
saved on disk, because most likely, they would be out
of date after the restart of the agent. In the shutdown
sequence, the agent usually closes all active contexts
and informs the conversation partner about the
situation. However, the agent can be offline without
having the chance to perform the shutdown sequence.
Hence, the agent must be able to notice a dropout of an
agent and find alternative ways to perform their tasks.

Each agent has an own agent control panel that can
be accessed by the administration control panel. The
control panel shows the personal data of the agent (so
that an agent can be identified) and the status of the
agent. In the status, the agent can show with different
status flags whether it is working normally or a problem
has arose. It is also possible to display confirmations of
messages sent or received and to inform about errors.

The agent control panel is the only way for the
administrator of the agent (or the community,
respectively) to maintain control over the agent. The
basic class of the agent control panel allows the
administrator to have insight in the four repositories of
the agent and to change the contents. It is also possible
to cause the agent to send messages. The status of the
agent can be changed, the agent can be halted
temporarily, or the shutdown sequence can be activated.
Each agent type has an own agent control panel which
should inherit the basic class or another class of an
agent control panel.

There is also the possibility to remote control an
agent by a System Administration Agent. However, the
agent can refuse the commands of the System
Administration Agent (e.g., if the agent does not trust
the System Administration Agent). However, the agent
must follow the commands of the agent control panel.
Even in case of an error, the administrator still has
influence on the agent through the agent control panel.
The technical reason for this is that the agent control
panel invokes methods of the agent directly, while the
System Administration Agent can only send messages.

Additional to the agent control panel, which is
designed for the administrator and always shown within
the administration control, an agent may also have a
graphical user interface that is designed for a customer
or another human user of the system.

6.6 Web Services

While the internal communication of an agent is based
on local method calls, the external communication is
done by Web services. This approach can lead to a
really open system, because any application can be a
UniCats agent, as long as a Web service interface is
provided. The underlying system, especially the
programming language is not important.

In our Java-based implementation of the agent
community, it was possible to create the necessary
classes for the Web service interface automatically
using the free AXIS toolkit. This does not only reduce
the programming effort, it also increases the robustness
of the system, since difficult to detect implementation
errors could be avoided. Another positive effect is that
after changes in the communication module, a
functional community can be created very fast.
However, instead of using AXIS, it is also possible to
use any other tool for the Web service creation or write
the Web service manually.

The external communication in the community is
based on the external communication module. The
external communication module contains the same send
and receive methods as the communication module. The
receive methods – which are called themselves by the
Web service – simply call the corresponding receive
messages of the communication module, while the send
messages – which are called themselves by the
corresponding methods of the communication module –
call the Web service of the distant community.

The AXIS toolkit creates both the necessary classes
for the Web service, which simply link the send
methods of one community to the receive messages of
the other community, and a WSDL document of the
Web service interface, which can be used as a unified
description of the interface.

 In order to use the community as a Web services, it
is necessary to couple the Web services with a Web
server. Again, we did not write a Web server on our
own – although this would be possible – but used the
free Tomcat Web server, which is able to handle Java
Web services. For simplification reasons, we created a
second Web services in order to be able to start the
community remotely.

7 Conclusion
In this paper, we have introduced the idea of an
integration platform for libraries and information
services which bases on an extensible society of
software agents. We have pointed out the importance of
the integration problem in the modern society and the
challenges which accompany the development of such
an integration platform. Due to the commercialization
of the Internet, aspects of security and electronic
commerce will have to be considered also in the
scientific library scenario. We also have introduced our
solution to the problem with the open architecture of the
UniCats environment and our described our
implementation of this system.

It is important to illustrate that the major design
objective is extensibility. In a real open system, it is
necessary to add new libraries and information
providers, and there is also a need for new agents and
agent types. It is also necessary that agents work
together which are developed by different organization.
The advantage of the design in this paper is that new
agent or even new agent types can be added while the
system is already running.

There are three different ways how to add new
services to the integration system: (1) implement a
UniCats agent (by inheriting the agent basic class or any
other agent class); (2) create a Web service compatible
with the UniCats environment; (3) do nothing and use a
Provider Agent to join the integration system.

The practical usage of an open integration platform
in the scientific literature area is obvious. The
integration platform allows to bring together services
and sources without touching the independence of the
individual information providers. This gives the chance
that many small libraries can be a large library.

The requirements for the practical application of the
UniCats environments are few. Any computer with
Internet connection can host one or more agents, and
the use of communities even reduces the requirements
in the computer system.

The scientific usage of the agent system lies in the
study of the behavior of the agents in the market
environment and in the study of open markets
themselves. In the UniCats environment, agents decide
about their way on task execution according to their
programming, their knowledge about the structure of
the environment, and their experiences. Of special
interest is the fact that there is no central instance in the
environment that can survey or manage the entire
system. It is a scientific challenge to demonstrate that a
complex system with only distributed knowledge can
work.

It is necessary to extend the system continuously.
The continued development and extension of the system
may be a joined task for people from all over the world.
The implementation of the system started at the
University of Karlsruhe, but the development is now
transferred to an open source project.

References
[1] M. Baldonado, C.-C. Chang, L. Gravano, A.

Paepcke. The Stanford Digital Library Metadata
Architecture. In Inernational. Journal of Digital
Libraries, Vol. 1, Nr. 2, 1997.

[2] D. Boles, M. Dregger, et. al. The MeDoc System –
a Digital Publication and Reference Service for
Computer Science. In Digital Libraries in
Computer Science: The MeDoc Approach, A.
Barth, M. Breu, et. al. (eds), Springer LNCS, 1998.

[3] M. Christoffel. Cooperation and Federation of
Traders in an Information Market. In Proceedings
of the AISB Symposium Intelligent Agents in
Electronic Commerce, York, 2001

[4] M. Christoffel. Information Integration as a Matter
of Market Agents. In Proceedings of the 4th
International Conference on Electronic Commerce
Research, Montreal, 2002.

[5] M. Christoffel, B. Schmitt. Accessing Libraries as
Easy as a Game. In Proceedings of the 2nd
International Workshop on Visual Interfaces to
Digital Libraries, Portland (Oregon), 2002.

[6] M. Christoffel, B. Schmitt, J. Schneider. Semi-
Automatic Wrapper Generation and Adaptation:
Living with Heterogeneity in a Market
Environment. In Proceedings of the 4th
International Conference on Enterprise
Information Systems, Ciudad Real, 2002.

[7] M. Christoffel, S. Pulkowski, B. Schmitt, P.
Lockemann. Electronic Market: The Roadmap for
University Libraries and their Members to Survive
in the Information Jungle. In ACM Sigmod Record
Vol. 27 Nr. 4, 1999.

[8] E. Durfee, D. Kiskis, W. Birmingham. The Agent
Architecture of the University of Michigan Digital
Library. In Readings in Agents, M. Huhns, M.
Singh (Eds.), Morgan Kaufman, 1998.

[9] E. Durfee, T. Mullen, S. Park, J. Vidal, P.
Weinstein. The Dynamics of the UMDL Market
Society. In Proceedings of the 2nd Workshop on
Cooperative Information Agents, Paris, 1998.

[10] N. Fuhr, N. Gövert, C.-P. Klas. An Agent-Based
Architecture for Supporting High-Level Serach
Activities in Federated Digital Libraries. In
Proceedings of the International. Conference Asian
Digital Libraries, Seoul, 2000.

[11] A. Paepcke, R. Brandriff, et. al. Search Middleware
and the Simple Digital Library Middleware
Protocol. In DLib Magazine, Vol. 6, Nr. 3, 2000.

[12] B. Schmitt, A. Schmidt. METALICA: An
Enhanced Meta Search Engine for Literature
Catalogs. In Proceedings of the 2nd International
Conference Asian Digital Libraries, Taipei, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

