
 99

EXTENSIBLE ONTOLOGICAL MODELING FRAMEFORK FOR
SUBJECT MEDIATION

L. A. Kalinichenko, N. A. Skvortsov
Institute for Problems of Informatics RAS, Moscow, Vavilova, 44/2
{leonidk,scvora}@synth.ipi.ac.ru

An approach for extensible ontological model construction in a media-
tion environment intended for heterogeneous information sources integration in
various subject domains is presented. A mediator ontological language (MOL)
may depend on a subject domain and is to be defined at the mediator consolida-
tion phase. On the other hand, for different information sources different onto-
logical models (languages) can be used to define their own ontologies. Reversi-
ble mapping of the source ontological models into MOL is needed for informa-
tion sources registration at the mediator. An approach for such reversible map-
ping is demonstrated for a class of the Web information sources. It is assumed
that such sources apply the DAML+OIL ontological model. A subset of the hy-
brid object-oriented and semi-structured canonical mediator data model is used
for the core of MOL. Construction of a reversible mapping of DAML+OIL into
an extension of the core of MOL is presented in the paper. Such mapping is a
necessary pre-requisite for contextualizing and registration of information
sources at the mediator. The mapping shows how extensible MOL can be con-
structed. The approach proposed is oriented on digital libraries where retrieval is
focused on information content, rather than on information entities.

1 Introduction

This paper has been written in context of a project1 investigating subject
mediation approach supporting information integration in a particular subject
domain. Web information integration systems, digital libraries providing content
interoperability, digital repositories of knowledge in certain domains (like: Digi-
tal Earth, Digital Sky, Digital Bio, Digital Law, Digital Art, Digital Music) are
few examples of respective areas. In digital libraries created in such areas re-
trieval is focused on information content, rather than on information entities. For
example, in digital libraries for education semantic conceptual modeling is re-
quired going beyond conventional textbooks and courses as information entities.
Another example is an interoperability of metadata registries where crossing of
boundaries between different information contexts is required.

For such areas, according to the approach, the application domain model
is to be defined by the experts in the field independently of potentially relevant
information sources. This model may include specifications of data structures,

1 This research has been partially supported by the grant of the Russian Foundations for Basic Re-
search N 01-07-90084

 100

terminologies (thesauri), concepts (ontologies), methods applicable to data,
processes (workflows) characteristic for the domain. These definitions constitute
specification of a subject mediator. After subject mediator had been specified,
information providers can disseminate their information for integration in the
subject domain independently of each other and at any time. To disseminate
they should register their information sources at the subject mediator. Users may
not know anything about the registration process and about the sources that have
been registered. Users should know only subject domain definitions that contain
concepts, structures, methods approved by the subject domain community. Thus
various information sources belonging to different providers can be registered at
a mediator.

The subject mediation approach is applicable to various subject domains
in science, cultural heritage, mass media, e-commerce, etc. This technology is
contrasted with the widely used general purpose Web search engines character-
ized by very low precision of search due to uncontrollable use of terms for in-
dexing and search. This is unavoidable payment for simplicity of sites “registra-
tion” at the Web.

Local as View (LAV) mediator architecture [5] is assumed as a basis for
the subject mediation. According to LAV, schemas exported by sources are
taken as materialized views over virtual classes of the mediated schema. Queries
are expressed in terms of the mediated schema. The LAV architecture is de-
signed to cope with a dynamic, possibly incomplete set of sources. Sources may
change their exported schemas, become unavailable from time to time. LAV is
potentially scalable with respect to a number of sources involved.

Two separate phases of the subject mediator functioning are distin-
guished: consolidation phase and operational phase. Consolidation phase is in-
tended for the subject model definition. During this phase the mediator's schema
metainformation is formed. During operational phase the burden of the sources
registration process is imposed on the information providers. They formulate
sources' specifications (schemas, concept definitions, vocabularies) in terms of
the subject mediator's metainformation. In process of registration the local
metainformation sublayer of the mediator is formed expressing source schemas
in the mediator's canonical model as views above the mediator schema. Manag-
ing source registration concurrently by providers is the way to reach the media-
tor's scalability.

In [3] methods and tools required to support information source registra-
tion process at the mediator are presented. For the LAV mediation strategy, [3]
considers information source registration as the process of compositional infor-
mation systems development [2]. Source metainformation definitions are treated
as specifications of requirements and classes of the mediator level with the re-
lated metainformation – as specifications of pre-existing components. To get
source classes definitions as views above the mediator level, facilities of specific
method and tool [3] are applied.

 101

Specifications of information sources and mediator specifications must be asso-
ciated with ontological contexts defining concepts of the respective subject ar-
eas. For the uniformity reasons, the ontological concepts are described by means
of the mediator’s canonical model as type specifications. Ontological concepts
are also described with their verbal definitions similar to definitions of words in
an explanatory dictionary. Verbal definitions are required for establishing pre-
liminary semantic relationships between concepts. Several kinds of semantic re-
lationships (positive, hyponym/hypernym) can be discovered between ontologi-
cal concepts as fuzzy ones.

To contextualize information sources at the mediator during their regis-
tration, it is required to map local ontological contexts of the sources into the
mediator’s ontology. Fuzzy relationships between concepts of different contexts
are established by calculating correlation coefficients between concepts on the
basis of their verbal definitions. The correlation coefficients are calculated using
the vector-space approach [10]. This technique of the ontological composition
(loose ontological integration) provides for establishing fuzzy correlation be-
tween related concepts [13]. Another technique (tight ontological integration)
consists in composition of ontological modules using complete specifications of
concepts as type definitions.

In [7] the GIMP protocol (GIMP – Generalized Intermediator Protocol)
supporting registration of an information source at a mediator is considered. A
subset of OAI protocol [11] is used during registration to exchange metainfor-
mation uniformly represented in the canonical model of the intermediator
framework. According to GIMP, a canonical schema is organized in modules,
each of them containing all subject mediator specifications of one of the follow-
ing kinds: structural specifications (definitions of subject mediator types and
classes), ontological specifications, thesaurus specifications, classifier specifica-
tions, etc. For each kind of metainformation format, an XML-oriented definition
and a respective namespace are provided. In terms of OAI, a subject mediator
can disseminate metainformation in multiple formats mentioned. After obtaining
the required specifications from the mediator, the provider contextualizes its
source metainformation in the mediator’s context, maps local source structural
definitions into the canonical model and constructs representation of local
classes in terms of the mediator’s classes. The results of the registration are
formed as a local source schema expressed in terms of the canonical model with
the appropriate terminological, structural and ontological links to the respective
components of the mediator schema. Mediator takes registration information
from the provider to complete the registration.

One of the main difficulties of the tight ontological integration in frame
of GIMP consists in reconciling of different ontological models in the mediator
and information sources. This problem is discussed in this paper in details re-
garding contextualization of the Web information sources in the subject media-
tor as an example. Basic model considered now for the Semantic Web is a Web

 102

ontology language which can formally describe the semantics of classes and
properties used in Web documents. DAML+OIL has been submitted to W3C as
a candidate for the Web ontology language [1,4]. Ontologies are intended to im-
prove existing Web-based applications and may enable new uses of the Web.
DAML+OIL builds on earlier W3C standards such as RDF and RDF Schema,
and extends these languages with richer modeling primitives. In the mediator
considered here the SYNTHESIS language [6] is used for the canonical model-
ing. This is a hybrid object-oriented and semi-structured data model with a logic
capability. To make registration of a Web source at the mediator possible, a re-
versible mapping of the Web ontology language into the mediator ontological
model is required. Under this condition, applying the GIMP protocol, transfor-
mation of the mediator ontological specifications into DAML+OIL becomes
possible and after contextualization made in DAML+OIL model, the result is
transformed to the mediator representation and is returned back to the mediator.

Since the registration is done by providers in their native environments,
DAML+OIL capabilities can be applied using methods of proving structural
subsumption and satisfiability of concepts after mapping of the mediator ADT
concept specifications into DAML+OIL. Proof of a subsumption of
DAML+OIL classes implies subtyping relationship of the respective ADTs after
the reverse mapping of DAML+OIL into the canonical mediator model.

The paper presents in the subsequent sections a reversible mapping of
DAML+OIL into the mediator ontological model the core of which is defined as
the SYNTHESIS language subset. An extension of this core having equal to
DAML+OIL expressive power is introduced showing mapping of DAML+OIL
into such extension. Reverse mapping of the resulted MOL into DAML+OIL is
presented in the next section showing that the mapping commutes. A correspon-
dence between DAML+OIL, MOL constructs and Description Logic is summa-
rized in the table given in Appendix.
The knowledge of DAML+OIL [1, 4] by readers is assumed.

2 Mediator’s Ontological Framework

The mediator’s ontological framework introduced here is based on the
following considerations. For different information sources different ontological
models (languages) can be used to define their ontologies. At the consolidation
phase a concrete mediator ontological model is to be chosen (constructed) for
the definition of the ontology of a specific subject domain. Different models
may be required for different domains. Here we assume that the core of the me-
diator ontological language is defined as a subset of the mediator canonical
model. Various approaches for construction of subject domain-oriented onto-
logical models can be designed. For instance, such model can be developed
based on a prediction of a set M of ontological models that are used for the
sources potentially relevant to the mediator subject domain. In this case the me-

 103

diator model can be constructed as a union of extensions of the MOL core
equivalent to each of the model in M.

During operational phase, to make tight ontological integration possible,
each source ontological model should be mapped into the MOL. It is well
known that each such mapping should be formed as an extension of the MOL
core having equal capabilities with the source model [9].

Due to the above, the following ontological language framework for the
mediator is assumed. To construct various ontological models, a core of MOL
is defined as a subset of the mediator canonical model. The main constituent to
be defined in the model is a concept. A concept is an entity of knowledge repre-
sentation that reflects characteristics of all similar objects of real world that
could exist in a given subject domain. In terms of the canonical model of a me-
diator a concept is natural to define as an abstract data type (ADT). ADT in the
mediator canonical model (SYNTHESIS [6]) is an object-oriented notion ap-
plied for modeling of any kind of real-world entities. As ADT, a concept may be
characterized by subtyping relationship forming concept hierarchy. Attributes,
relationships, invariants can be imposed on instances of ADT.

Besides ADT, an ontological concept specification can contain its verbal
description expressing the concept meaning in a subject domain. Verbal descrip-
tion is a natural-language definition of a concept, which may be used during reg-
istration for preliminary interrelating of mediator concepts with concepts from
different source ontologies. For this purpose descriptor lists for concepts are
taken from their verbal definitions to apply weighted vector-space concept simi-
larity (hierarchy) evaluation method [10]. Descriptor list of a concept consists of
lexical units characterizing given concept.

Using verbal description, between two concepts one of several kinds of
semantic relationships can be established (such as positive and hypernym rela-
tionships). These relationships are treated as fuzzy ones. Using properties of the
respective relations (e.g., transitivity) it is possible to infer concept relationships
that are not represented directly. During the process of source registration at the
mediator, loose integration of the source ontology with that of the mediator is
applied [13] to establish verbal-based fuzzy relationships between concepts.

Tight ontology integration based on concept definitions as ADT is used
during registration process for more precise reconciliation of a source ontologi-
cal context with that of the subject mediator. Semantic relationships deduced
from the verbal definitions of the concepts provide an intuition to look for their
more sound interpretation. For instance, a positive verbal concept relationship
assumes that equivalence of respective concept ADT specifications is expected.
Hyponym/hypernym relationship assumes that subtyping of respective concepts
is expected.

The MOL core provides only hierarchical relationship between the con-
cepts. All other relationships and constraints are provided in core extensions.
Each extension together with the core is equal in its capabilities to a specific

 104

(source) ontological model. More details on the MOL core and constructing the
extensions are provided in the following sections.

3 Mediator Ontological Language: the Core

3.1 General Features of the SYNTHESIS Language

For the canonical model of a mediator the SYNTHESIS language has

been chosen [6]. This language uses a hybrid semi-structured/object data model
[8]. The canonical model considered provides support of wide range of data -
from untyped data on one end of the range to strictly typed data on another. Self-
descriptive, semi-structured data are represented as frames that are used as sym-
bolic models of some entities or concepts. The language uses frames to describe
any entity, including the entities of the language itself, such as types, classes,
functions, assertions. A frame at any moment of its life cycle can be declared be-
longing to an admissible class (class is a collection of typed objects). At that
moment the frame becomes an object.

Typed data should conform to abstract data types (ADT) prescribing be-
haviour of their instances by means of the type's operations. ADT describes an
interface of a type whose signature defines names and types of its operations.
State-based attributes of ADT are defined with a shorthand: <attribute
name>: <type>. Type invariants (constraints expressed as closed logic for-
mulae) can be included into the type definition. Besides ADT, the language con-
tains also a comprehensive collection of built-in datatypes. Subtyping relation
over a collection of ADT forms a lattice with Taval as a root and Tnone as a
bottom of the lattice.

Types in the language are objects themselves. The multilevel type sys-
tem of the language is organized as follows. On the level of types the type ob-
jects are located providing for definition of concrete and generic types. On the
second level (the level of "types of types") the metatype objects are located that
include as their instances the types of the first level. On the third level the
metatypes objects are located that include the metatypes of the second level as
their instances, and so forth. Thus the multilevel type system sets a classification
relationship on types that is orthogonal to the subtype relationship.

Metatypes behave like (meta)classes that in their turn are organized as
follows. A class specification combines information about two kinds of objects:
about a class as an object itself and about objects - instances of the class. Gener-
ally metaclasses provide for introducing of generic concepts and of common at-
tributes (or of their categories) for similar classes, for introducing of common
consistency constraints and deductive rules for such classes and their attributes.
Metaclasses provide for proper grouping of application domain information and
for proper differentiation of various application domains.

 105

In the language the attribute specifications of objects may be treated in
their turn also as types of association objects establishing a correspondence be-
tween a set of objects in an association domain and a set of objects in an associa-
tion range. Thus a specification of a type attribute may be considered as a speci-
fication of an association type.

3.2 The Core of the Mediator Ontology Language

A subset of the mediator’s canonical model (the Core of the Mediator

Ontology Language (MOL)) sufficient for constructing extensions equivalent to
various ontological models is characterized in more details. Only small subset of
the SYNTHESIS ADT specification is included with state-based attributes and
invariants. ADT specifications are syntactically represented by frames, their at-
tributes – by slots of the frames. Additional information related to attributes can
be included into metaslots. Syntactically frames are included into figure brackets
{ and }, slots are represented as pairs <slot name>:<slot value> (a
frame in its turn can be used as a slot value), slots in a frame are separated by
semi-colons. Metaslots (that are represented by frames) are written immediately
after the slots to which they are related.

Invariants are expressed using formulae of the SYNTHESIS object cal-
culus. To specify formulae, a variant of a typed (multisorted) first order predi-
cate logic language is used. Every predicate, constant and variable in formulae is
typed. Predicates in formulae correspond to types or their Boolean combinations
(expressed with & (intersection), | (union), ^ (complement)). Variables and
constants are used as terms. Each term has a well-defined type. Explicitly typed
variables are denoted as <identifier>/<type>.

Throughout the paper we use an example of ontology presented in [1].
This ontology uses classes: Animal, Male, Female, Man, Woman,
Person, properties: hasParent, hasFather, hasMother,
hasSpouse, hasOccupation, class elements DisjointWith, Dis-
jointUnionOf, and properties restrictions. In the first part of the paper we
show how an extension of the MOL core can be constructed with the same
meaning as DAML+OIL. Later we show how the constructed model can be
mapped back to DAML+OIL getting specifications similar to those that can be
found in [1]. Please, note that all examples presented in the paper are pieces of
one and the same ontology expressed in two different languages.

{Animal; (1)
 in: type, daml_oil;
 hasParent: Animal;
 metaslot
 in: HasParent
 end
 hasFather: Male;

 106

 metaslot
 in: HasFather
 end
 hasMother: Female;
 metaslot
 in: HasMother;
 end
 hasMom: Female;
 metaslot
 in: HasMother
 end
 age: integer;
 metaslot
 in: Age
 end
 sameAs: {in: invariant, samePropertyAs,
 {{ all a/Animal (hasMother(a) = HasMom(a) }}}
};
{Male; (2)
 in: type, daml_oil;
 supertype: Animal
};
{Female; (3)
 in: type, daml_oil;
 supertype: Animal;
 disjoint: {in: invariant, disjointWith,
 {{Male(a/Animal) & Female(a/Animal) = {} }}}
};

(1) defines a type Animal. type, daml_oil, invariant,
sameProperyAs are names of built-in metatypes. Attributes of Animal be-
long to association metatypes defined in the sequel. sameAs is a type invariant
expressing semantics of sameProperyAs of DAML+OIL. Formulae in in-
variants are put into double figure brackets. (2), (3) are subtypes of Animal
that correspond to the respective class elements in DAML+OIL example.

Treating of an object attribute as an association motivates an introduc-
tion of association metatypes establishing properties of such association types. It
is said that an object attribute (as an association) belongs to a particular attribute
category that is explicitly introduced by an association metatype. Association
metatypes (or categories) are built-in or user defined.

User-defined association metatype is structured for our limited purpose
as follows. Association metatype names (for direct and inverse associations) are
used for category names of type attributes. An association type is defined in an
instance_section of an association metatype. In an association type speci-
fication two pre-defined attributes domain and range can be given. Otherwise
domain and (or) range of an association metatype are not restricted.

An association type (as a type of binary relation) is set by an attribute
association_type. If an association R is defined on a domain C1 and a

 107

range C2 then the bounds (pairs of positive integers) define the following. The
first bound gives for any object c1 of C1 an admissible range (minimal and
maximal value) of a number of different objects c2 of C2 such that {<c1,c2>} be-
longs to R. The second bound for any c2 of C2 gives a minimal and maximal
value of a number of objects c1 of C1 such that {<c2,c1>} belongs to an associa-
tion inverse to R. inf is a constant denoting an arbitrary positive integer. Sub-
typing relation can be established on association metatypes.

{HasParent; (4)
 in: metatype, association, daml_oil;
 inverse: HasChild;
 instance_section:
 {domain: Animal;
 range: Animal}
};
{HasFather; (5)
 in: metatype, association, daml_oil;
 superclass: HasParent;
 instance_section:
 {domain: Animal;
 range: Male}
};
{HasFatherCard; (6)
 in: metatype, association, daml_oil;
 superclass: HasFather;
 instance_section:
 {domain: Animal;
 range:Male;
 association_type: {{1,1},{0,inf}};
 metaslot
 in: onProperty, cardinality, UniqueProperty,
 end}
};
{HasMother; (7)
 in: metatype, association, daml_oil;
 superclass: HasParent;
 instance_section:
 {domain: Animal;
 range: Female}
};
(4) – (7) are association metatypes defining features of type attributes (treated as
properties in DAML+OIL). Domain, range and association type can be defined.
Slot inverse defines inverse association. (6) is a specialization of HasFather
adding association type. This type is used to express partially a role of on-
Property cardinality restriction in DAML+OIL.

 108

4 MOL core extension equivalent to DAML+OIL model

We consider mapping of the object world of DAML+OIL [1,4] into
MOL. Roughly the object world of DAML+OIL is mapped into MOL as fol-
lows: classes and restrictions are mapped into types, properties are mapped into
type attributes (that may belong to certain association metatypes), individuals
are mapped into frames. Before providing further details, new built-in SYN-
THESIS metatypes (induced by DAML+OIL) are introduced:
• daml_oil: types and associations of ontology become instances of this

metatype;
• restriction: classifies types belonging to it as modeling restrictions of

DAML+OIL;
• disjointWith, disjointUnionOf, onProperty, toClass,

hasValue, hasClass, cardinality, maxCardinality,
minCardinality, cardinalityQ, maxCardinalityQ, min-
CardinalityQ, sameTypeAs, equivalentTo, sameProp-
ertyAs: metatypes to which invariants in type definitions can be associated.
These invariants interpret respective DAML+OIL elements.

Other extensions of the MOL core follow.

4.1 Class Elements Interpretation

Classes Thing, Nothing of DAML+OIL are mapped into Taval,

Tnone types of MOL respectively. subClassOf <class-expression
list> is mapped into supertype <type name list>.
A type with name T in the type name list results of mapping of a class expres-
sion CE (this mapping is denoted for short CE>T; such double denotation will
help explaining mapping of DAML+OIL constructs into MOL). For different
cases of class expression (class name, enumeration type, property restriction,
Boolean combination of class expressions) the mapping is denoted as:
• a type name T resulting from a mapping of a class name C (denoted for short

as C>T);
• a name of the enumeration type - mapping of the DAML+OIL enumeration

(denoted as E>EM);
• a name of type T - mapping of the DAML+OIL property-restriction R (de-

noted as R>T);
• a name T of a type defined by invariant showing that the set of admissible

values of this type is equal to a resulting set of a formula F. F is a result of
mapping of Boolean combination Bexp of class expressions (denoted as
Bexp>T:F).

 109

A type corresponding to a class defined by a Boolean combination of
class expressions look as follows:

{TallMan; (8)
 in: type, daml_oil;
 inters: {in: invariant, Boolean_combination,
 {{TallMan(a/Taval) = (Man(a/Taval) &
TallThing(a/Taval))}}}
};

disjointWith element asserting that C is disjoint with the class-
expression CE in the element (i.e. C must have no instances in common with it)
is mapped into the invariant (example (3)):
I: {in: invariant, disjointWith, {{(C>T1 & CE>T2 = {}) }}}

disjointUnionOf element asserts that C has the same instances as
the disjoint union of the class-expressions element (all of the classes defined by
the class-expressions of a disjointUnionOf element must be pairwise dis-
joint). For two class expressions CE1 and CE2 the resulting invariant looks as:

I: {in:predicate, invariant, disjointUnionOf,
 {{(C>T = (CE1>T1 | CE2>T2)) & (CE1>T1 & CE2>T2 = {}) }}}

Type Person (example 11) contains such an invariant. Types Man,
Woman, Person correspond to the respective class elements in DAML+OIL
ontology example [1].

{Man; (9)
 in: type, daml_oil;
 supertype: Person, Male
};
{Woman; (10)
 in: type, daml_oil;
 supertype: Person, Female
};
{Person; (11)
 in: type, daml_oil;
 supertype: R_Person;
 hasSpouse: Person;
 metaslot
 in: HasSpouse;
 {comment; if hasSpouse would be defined as
 in:HasSpouseMarried then this would be a definition
 of the married person concept}
 end
 hasOccupation: FullTimeOccupation;
 metaslot
 in: HasOccupation
 end
 dunion: {in: invariant, disjointUnionOf
 {{(Person(p/Person) = (Man(p/Person) | Woman(p/Person))) &

 110

 (Man(p/Person) & Woman(p/Person) = {}) }}}
};

In this type definition we assume:

{HasSpouse; (12)
 in: metatype, association, daml_oil;
 instance_section:
 {domain: Person;
 range: Person;
 association_type: {{0,1},{0,1}}
 metaslot
 in: onProperty, maxCardinality
 end}
};
{HasSpouseMarried; (13)
 in: metatype, association, daml_oil;
 superclass: HasSpouse;
 instance_section:
 {domain: Person;
 range: Person;
 association_type: {{1,1},{1,1}}
 metaslot
 in:onProperty, Cardinality
 end}
};
{HasOccupation; (14)
 in: metatype, association, daml_oil;
 instance_section:
 {domain: Person;
 range: FullTimeOccupation;
 association_type: {{0,1},{0,inf}}
 metaslot
 in: onProperty, Cardinality0
 end}
};

sameClassAs element asserts that C is equivalent to the class-
expression in the element. The resulting invariant (for equivalentTo ele-
ment the invariant is similar) looks as:

I: {in: invariant, sameClassAs, {{(C>T1 = CE>T2)}}}

HumanBeing concept is the same as Person:

{HumanBeing; (15)
 in: type, daml_oil;
 supertype: Person;
 sameTypeAs: {in: invariant, sameClassAs
 {{all p/Person (HumanBeing(p) = Person(p)) }}}
};

 111

4.2 Property Restrictions Interpretation

A property restriction is a special kind of class expression in

DAML+OIL. It implicitly defines an anonymous class, namely the class of all
objects that satisfy the restriction. A restriction is mapped into a subtype of a
property domain type.

daml:toClass element defines the class of all objects for whom the
values of property P all belong to the class expression. In other words, it defines
the class of object x for which it holds that if the pair (x,y) is an instance of P,
then y is an instance of the class-expression CE>T or datatype. The following
invariant in a subtype ST of a property domain type is included:

I: {in: invariant, onProperty, toClass,
 {{all x (ST(x) & (P(x) ⊆ CE>T))}}}

Type R_Person is a subtype of Animal. Parents of R_Person instances
should be Persons.

{R_Person; (16)
 in: type, daml_oil, restriction;
 supertype: Animal;
 hp: {in: invariant, onProperty, toClass,
 {{all ap (R_Person(ap) & hasParent(ap) <= Person) }}};
 hasFather: Male;
 metaslot
 in: HasFatherCard
 end
};

daml:hasValue element defines the class of all objects for whom the
property P has at least one value equal to the named object or datatype value
(and perhaps other values as well). In other words, if we call the instance y, then
it defines the class of objects x for which (x,y) is an instance of P. The following
invariant in a subtype ST of a property domain type is included:

I: {in: invariant, onProperty, hasValue,
 {{all x (ST(x) & y∈P(x)) }}}

daml:hasClass element defines the class of all objects for which at
least one value of the property P is a member of the class expression or datatype.
In other words, it defines the class of objects x for which there is at least one in-
stance y of the class-expression CE or datatype such that (x,y) is an instance of
P. The following invariant in a subtype ST of a property domain type is in-
cluded:

I: {in: invariant, onProperty, hasClass,
 {{all x (ST(x) & ex y (P(x,y) & CE>T(y))) }}}

 112

4.3 Cardinality Constraints Interpretation

daml:cardinality element. This defines the class of all objects that

have exactly N distinct values for the property P, i.e. x is an instance of the de-
fined class if and only if there are N distinct values y such that (x,y) is an in-
stance of P. For property P an association metatype is defined with an associa-
tion type specified as:

association_type: {{N,N},{?,?}}

HasFatherCard (example 6) and HasSpouseMarried (example
13) are of this association type.

daml:maxCardinality element. This defines the class of all objects
that have at most N distinct values for the property P. For property P an associa-
tion metatype is defined with an association type specified as:

association_type: {{0,N},{?,?}}

HasSpouse (example 12) is of this association type.
daml:minCardinality element. This defines the class of all objects

that have at least N distinct values for the property P. For property P an associa-
tion metatype is defined with an association type specified as:

association_type: {{N,inf},{?,?}}

daml:cardinalityQ element defines the class C of all objects that
have exactly N distinct values for the property P that are instances of the class
expression CE or datatype (and possibly other values not belonging to the class
expression or datatype). In other words: x is an instance of the defined class (x
satisfies the restriction) if and only if there are exactly N distinct values y such
that (x,y) is an instance of P and y is an instance of the class expression or
datatype. For property P an association metatype is defined with an instance
type defined as:

{domain: C>T1;
 range: CE>T2;
 association_type: {{N,N},{?,?}};
 metaslot
 in: onProperty, cardinalityQ
 end }

This is the same as:

I: {in: invariant, onProperty, cardinalityQ,
 {{all x(C>T1(x) & count (P(x) & CE>T2) = N) }}}

 113

daml:maxCardinalityQ element. This defines the class C of all ob-

jects that have at most N distinct values for the property P that are instances of
the class expression CE or datatype (and possibly other values not belonging to
the class expression or datatype). For property P an association metatype is de-
fined with an instance type defined as (example 14):

{domain: C>T1 ;
 range: CE>T2;
 association_type: {{0,N},{?,?}};
 metaslot
 in: onProperty, CardinalityQ
 end}

daml:minCardinalityQ element. This defines the class C of all ob-
jects that have at least N distinct values for the property P that are instances of
the class expression CE or datatype (and possibly other values not belonging to
the class expression or datatype). For property P an association metatype is de-
fined with an instance type defined as:

{domain: C>T1 ;
 range: CE>T2;
 association_type: {{N,inf},{?,?}};
 metaslot
 in: onProperty, CardinalityQ
 end}

We have considered mostly the object world of DAML+OIL so far.
Datatype world is treated similarly. XML Schema datatypes are mapped into
SYNTHESIS built-in or abstract types. Datatype values get adequate representa-
tion in SYNTHESIS. For instance, age attribute of Animal (example 1) is of
datatype integer. A property restriction based on such type is expressed as a
type:

{Adult; (17)
 in: type, daml_oil, restriction;
 supertype: Person;
 adultage : {in: invariant, onProperty, hasClass,
 {{all p (Adult(p) & age(p) > 17) }}}
};

5 Reverse Mapping of the MOL obtained into DAML+OIL

The intention of this section is to show that the extended MOL specifica-
tions contain enough information to map them into DAML+OIL definitions pre-
serving original meaning. General rules for such reverse mapping are the follow-
ing:

 114

• MOL type that does not belong to restriction metatype is mapped into
DAML+OIL class (subclass). Type invariants belonging to disjoint-
With, disjointUnionOf, sameClassAs metatypes are mapped
into the respective elements of the resulting class definition.

• MOL type attributes together with the semantics introduced by the related
association metatypes are mapped into DAML+OIL properties (subproper-
ties).

• MOL type that belongs to restriction metatype is mapped into DAML+OIL
restriction. In such cases invariants of MOL type belonging to metatypes
toClass, hasValue, hasClass are mapped into the respective ele-
ments of the resulting restriction.

• MOL type attributes P of a type C>T defined in an association metatype hav-
ing association types related to onProperty metatype are mapped into
cardinality or cardinalityQ property restriction of a class C.

Due to the fact that element definitions in DAML+OIL have a form of
various clichés in RDF, to generate a DAML+OIL definition for the cases 1 – 4
above it is required to extract from the MOL specifications the required parame-
ters and to insert them into the appropriate positions of the respective
DAML+OIL cliché. This process is illustrated with the following examples:

Case 1. For Female type (example 3) the following class definition will
be generated:

<daml:Class rdf:ID="Female">
 <rdfs:subClassOf rdf:resource="#Animal"/>
 <daml:disjointWith rdf:resource="#Male"/>
</daml:Class>

Case 2. For hasFather attribute of Animal type (example 1) the
following property definition will be generated:

<daml:ObjectProperty rdf:ID="hasFather">
 <rdfs:subPropertyOf rdf:resource="#hasParent"/>
 <rdfs:range rdf:resource="#Male"/>
</daml:ObjectProperty>

Case 3. For R_Person type (example 16) the following restrictions will
be generated (toClass and cardinality restrictions, the latter is related to
the Case 4):

<daml:Class rdf:about="#Person">
 <rdfs:subClassOf>
 <daml:Restriction>
 <daml:onProperty rdf:resource="#hasParent"/>

 115

 <daml:toClass rdf:resource="#Person"/>
 </daml:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <daml:Restriction daml:cardinality="1">
 <daml:onProperty rdf:resource="#hasFather"/>
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

Case 4. For hasOccupation attribute of Person type (example 11)
specifying cardinalityQ restriction the following definition will be
generated:

<daml:Class rdf:about="#Person">
 <rdfs:subClassOf>
 <daml:Restriction daml:maxCardinalityQ="1">
 <daml:onProperty rdf:resource="#hasOccupation"/>
 <daml:hasClassQ rdf:resource="#FullTimeOccupation"/>
 </daml:Restriction>
 </rdfs:subClassOf>
</daml:Class>

Difficulties arise with reversible mapping of MOL constants to XML
Schema datatype instances. DAML+OIL requires introduction of constants and
types of the following syntax (a type like that is to be produced for example 17):

rdf:resource=http://www.w3.org/TR/2001/NOTE-daml+oil-walkthru-
20011218/daml+oil-ex-dt#over17

Such definitions cannot be mapped reversibly without providing of a
specific normalized procedure of forming such specifications.

6 Related work

Ontolingua [12] provides maintaining of ontologies with multiple repre-
sentation languages to port from system to system. In contrast, the proposed ap-
proach is focused on compositions of ontologies with multiple representation
languages in a mediator context.

[9] presents an approach for development of commutative data model
mappings in process of design of heterogeneous database integration systems.
The method introduced provides for constructing canonical data model kernel
extensions equivalent to various source data models. The method is based on the
data model axiomatic extension principle. The canonical data model in the inte-
grating system should be extensible while new source data models are inte-
grated. Such extension is implemented axiomatically - by adding to the data

 116

definition language of a set of axioms determining (in terms of the canonical
model) of logical dependencies of the source data model. The result of the ex-
tension is proved to be equivalent to the source data model.

Similarly, reversible ontological model mapping technique proposed
here applies the axiomatic extension principle to the ontologies (Section 3).
 Reversible data model mappings methods are considered in [14] focusing on
the need for formal interpretation in which it becomes possible to transform da-
tabases between different data models.

7 Conclusion

The paper discusses ontological modeling framework issues in the me-
diation environment. For different information sources different ontological
models (languages) can be used to define their ontologies. Different ontological
models can be required for appropriate modeling of different subject domains.
How the mediator ontological language (MOL) should be positioned w.r.t. such
modeling variety is analyzed in the paper.

It is assumed that the core of MOL is defined as a subset of the mediator
canonical model. Based on such core, one and the same procedure is required to
design MOL for a specific domain as well as to map a source ontological model
into MOL. This procedure consists in development of the extension of the MOL
core equivalent to a given ontological model.

An approach for such reversible mapping construction is demonstrated
for a class of the Web information sources. It is assumed that such sources apply
the DAML+OIL ontological model. A subset of the hybrid object-oriented and
semi-structured canonical mediator data model is used for the core of MOL.
Construction of a reversible mapping of DAML+OIL into an extension of the
core of MOL is presented in the paper. Such mapping is a necessary pre-
requisite for contextualizing and registration of information sources at the me-
diator. The mapping shows how a problem of reconciling of non-compatible on-
tology modeling languages of the mediator and of heterogeneous information
sources can be solved.

The approach proposed is applicable to heterogeneous ontological mod-
els integration in various subject domains. Such integration may be required in
digital libraries where retrieval is based on the information content, rather than
on information entities, or where an interoperability of metadata registries is re-
quired to cross the boundaries between different information contexts, etc.

References

[1] Annotated DAML+OIL Ontology Markup.
http://www.w3.org/TR/daml+oil-walkthru/

 117

[2] Briukhov, D.O., Kalinichenko, L.A. Component-based information systems
development tool supporting the SYNTHESIS design method. In Proceedings of
the East European Symposium on Advances in Databases and Information Sys-
tems (ADBIS'98), Springer, LNCS No. 1475, 1998.
[3] Briukhov, D.O., Kalinichenko, L.A., Skvortsov, N.A. Information sources
registration at a subject mediator as compositional development. In Proceedings
of the Fifth East European Symposium on Advances in Databases and Informa-
tion Systems (ADBIS'01), Springer-Verlag, 2001, pp. 70-83.
[4] DAML+OIL (March 2001) reference description.
http://www.w3.org/TR/daml+oil-reference
[5] Friedman, M., Levy, A. and Millstein, T. Navigational Plans for Data Inte-
gration, In Sixteenth National Conference on Artificial Intelligence (AAAI-99),
Orlando, Florida, 1999.
[6] Kalinichenko, L. A. SYNTHESIS: the language for description, design and
programming of the heterogeneous interoperable information resource environ-
ment. Institute for Problems of informatics, Russian Academy of Sciences, Mos-
cow, 1995.
[7] Kalinichenko, L.A., Briukhov D.O., Tyurin I.N., Skvortsov N.A. Intermedia-
tor framework protocol for information sources registration at heterogeneous
mediators In Proceedings of the DELOS Workshop on Interoperability in Digital
Libraries, September 8-9, 2001, GMD-IPSI, Darmstadt, Germany
[8] Kalinichenko, L. A. Integration of Heterogeneous Semistructured Data Mod-
els in the Canonical One. In Proceedings of the First Russian Conference on
Digital Libraries, St. Petersburg, 1999.
[9] Kalinichenko L.A. Methods and tools for equivalent data model mapping
construction In Proceedings of the International Conference on Extending Da-
tabase Technology (EDBT'90), Venice, 1990
[10] G. Salton, C. Backley. Term-Weighting Approaches in Automatic Text Re-
trieval. Readings in Information Retrieval under edition of K. S. Jones and P.
Willett, Morgan Kaufmann Publishers Inc., 1997
[11] The Open Archives Initiative Protocol for Metadata Harvesting Protocol
Version 1.0 of 2001-01-21, DocumentVersion2001-04-24,
http://www.openarchives.org/OAI/openarchivesprotocol.htm
[12] Ontolingua. http://ontolingua.stanford.edu
[13] N. A. Skvortsov, L. A. Kalinichenko. An Approach to Ontological Model-
ing and Establishing Intercontext Correlation in the Semistructured Environ-
ment. In Proceedings of the Second Russian Conference on Digital Libraries,
Protvino, Sep 26-28, 2000
[14] De Troyer O.M.F. On data schema transformation. Ph. D. Thesis, Brabant
Univ., 1993

 118

Appendix

A correspondence between DAML+OIL and MOL constructs is summa-
rized in the following table. To show DAML+OIL element semantics, equiva-
lent Description Logic (DL) encoding is represented.

DAML+OIL Element
(and DL expression)

DAML+OIL RDF Encoding MOL specification

Nothing (⊥) <daml:Nothing/> Tnone

Thing (⊤) <daml:Thing/> Taval
class (C) <daml:Class rdf:ID=”C”/> {C; in: type }
individual (I) <daml:Thing rdf:ID=”I”/> {I; in: frame }
property (P) <daml:ObjectProperty rdf:ID="P"/> {P; in: association, metatype, daml_oil; }
domain <rdfs:domain rdf:resource = "#C"/> domain: C;
range <rdfs:range rdf:resource = "#C"/> range: C;
intersectionOf (C1⊓C2) <daml:intersectionOf rdf:parseType =

"daml:collection">
 <daml:Class rdf:about="#C1"/>
 <daml:Class rdf:about="#C2"/>
</daml:intersectionOf>

I: {in:predicate, invariant, intersectionOf
 {{C3(a/Taval) =
 C1(a/Taval) & C2(a/Taval)}} }

unionOf (C1⊔C2) <daml:unionOf rdf:parseType=
"daml:collection">
 <daml:Class rdf:about="#C1"/>
 <daml:Class rdf:about="#C2"/>
</daml:intersectionOf>

I: {in:predicate, invariant, unionOf
 {{C3(p/C3) = C1(p/C3) | C2(p/C3)}} }

complementOf (¬C) <daml:complementOf rdf:resource="#C"/> I: {in:predicate, invariant, ComplementOf
 {{C1(p/C1)=^C(p/C)}} }

oneOf ({x1…xn}) <daml:oneOf parseType =
"daml:collection">
 <daml:Thing rdf:about = "#x1"/>
 <daml:Thing rdf:about = "#xn"/>
</oneOf>

{enum; enum_list: x1,… xn}

toClass (∀R.C) <daml:Restriction>
 <daml:onProperty rdf:resource="#R"/>
 <daml:toClass rdf:resource="#C"/>
</daml:Restriction>

I: {in: invariant, onProperty, toClass,
 {{all x (C1(x) & (R(x,y) ⊆ C(y)))}}}

hasClass (∃R.C) <daml:Restriction>
 <daml:onProperty rdf:resource="#R"/>
 <daml:hasClass rdf:resource="#C"/>
</daml:Restriction>

I: {in: invariant, onProperty, hasClass,
 {{all x (C1(x) & ex y (P(x,y) & C(y)))}}}

hasValue (∃R.{x}) <daml:Restriction>
 <daml:onProperty rdf:resource="#R"/>
 <daml:hasValue rdf:resource="#x"/>
</daml:Restriction>

I: {in: invariant, onProperty, hasValue,
 {{all y (C1(y) & x∈R(y))}} }

minCardinalityQ
(≥nR.C)

<daml:Restriction
daml:minCardinalityQ="n">
 <daml:onProperty rdf:resource="#R"/>
 <daml:hasClassQ rdf:resource="#C"/>
</daml:Restriction>

{domain: C1;
 range: C;
 association_type: {{n,inf},{?,?}};
 metaslot
 in: onProperty, minCardinalityQ
 end}

minCardinality (≥nR) <daml:Restriction>
 <daml:onProperty rdf:resource="#R"/>
 <daml:minCardinality>n
</daml:minCardinality>
</daml:Restriction>

association_type: {{n,inf},{?,?}}

maxCardinalityQ
(≤nR.C)

<daml:Restriction
daml:maxCardinalityQ="n">
 <daml:onProperty rdf:resource="#R"/>
 <daml:hasClassQ rdf:resource="#C"/>
</daml:Restriction>

{domain: C1;
 range: C;
 association_type: {{0,n},{?,?}};
 metaslot
 in: onProperty, maxCardinalityQ
 end }

 119

maxCardinality (≤nR) <daml:Restriction>
 <daml:onProperty rdf:resource="#R"/>
 <daml:minCardinality>n
</daml:minCardinality>
</daml:Restriction>

association_type: {{0,n},{?,?}}

cardinalityQ (=nR.C) <daml:Restriction daml:CardinalityQ="n">
 <daml:onProperty rdf:resource="#R"/>
 <daml:hasClassQ rdf:resource="#C"/>
</daml:Restriction>

{domain: C1;
 range: C;
 association_type: {{n,n},{0,inf}}
 metaslot
 in: onProperty, CardinalityQ
 end}

cardinality (=nR) <daml:Restriction daml:cardinality="n">
 <daml:onProperty rdf:resource="#R"/>
</daml:Restriction>

association_type: {{n,n},{?,?}}

subClassOf (C1 ⊑ C2) <rdfs:subClassOf rdf:resource="#C2"/> {C1; in: type;
 supertype: C2}

sameClassAs (C1 ≡ C2) <daml:sameClassAs rdf:resource="#C2"/> I: {in: invariant, sameClassAs,
 {{(C1(x/C1) = C2(x)}}}

subPropertyOf
(P1 ⊑ P2)

<rdfs:subPropertyOf rdf:resource="#P2"/> {P1; in: association, metatype;
 superclass: P2 }

samePropertyAs
(P1 ≡ P2)

<daml:samePropertyAs
rdf:resource="#P2"/>

I: {in: invariant, samePropertyAs,
 {{(P1(x) = P2(x))}}}

disjointWith
(C1 ⊑¬ C2)

<daml:disjointWith rdf:resource="#C2"/> disjoint: {in:predicate, invariant, disjointWith,
 {{C1(a/C3) & C2(a/C3) = {} }} }

inverseOf (P1 ≡ P2-) <daml:inverseOf rdf:resource="#P2"/> inverse: P2;
transitiveProperty
(P+ ⊑ P)

<daml:TransitiveProperty rdf:ID="P"/> metaslot
 in: onProperty, transitiveProperty
end

uniqueProperty
(⊤ ⊑≤1 P)

<daml:UniqueProperty rdf:ID="P"> {association_type: {{1,1},{0,inf}};
 metaslot
 in: onProperty, cardinality, UniqueProperty
 end}}

unambiguousProperty
(⊤ ⊑≤1 P-)

<daml: UnambiguousProperty rdf:ID="P"> metaslot
 in: onProperty, unambigousProperty
end

disjointUnionOf
(C1⊔ C2,

⊥≡ C1 ⊓ C2)

<daml:disjointUnionOf
rdf:parseType="daml:collection">
 <daml:Class rdf:about="#C1"/>
 <daml:Class rdf:about="#C2"/>
</daml:disjointUnionOf>

dunion: {in:predicate, invariant, disjointUn-
ionOf,
 {{(C3(x/C3) = (C1(x/C3)|C2(x/C3))) &
 (C1(x/C3)&C2(x/C3) = {}) }}}

