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An approach for extensible ontological model construction in a media-
tion environment intended for heterogeneous information sources integration in 
various subject domains is presented. A mediator ontological language (MOL) 
may depend on a subject domain and is to be defined at the mediator consolida-
tion phase. On the other hand, for different information sources different onto-
logical models (languages) can be used to define their own ontologies. Reversi-
ble mapping of the source ontological models into MOL is needed for informa-
tion sources registration at the mediator. An approach for such reversible map-
ping is demonstrated for a class of the Web information sources. It is assumed 
that such sources apply the DAML+OIL ontological model. A subset of the hy-
brid object-oriented and semi-structured canonical mediator data model is used 
for the core of MOL. Construction of a reversible mapping of DAML+OIL into 
an extension of the core of MOL is presented in the paper. Such mapping is a 
necessary pre-requisite for contextualizing and registration of information 
sources at the mediator. The mapping shows how extensible MOL can be con-
structed. The approach proposed is oriented on digital libraries where retrieval is 
focused on information content, rather than on information entities. 
 

1 Introduction 
 

This paper has been written in context of a project1 investigating subject 
mediation approach supporting information integration in a particular subject 
domain. Web information integration systems, digital libraries providing content 
interoperability, digital repositories of knowledge in certain domains (like: Digi-
tal Earth, Digital Sky, Digital Bio, Digital Law, Digital Art, Digital Music) are 
few examples of respective areas. In digital libraries created in such areas re-
trieval is focused on information content, rather than on information entities. For 
example, in digital libraries for education semantic conceptual modeling is re-
quired going beyond conventional textbooks and courses as information entities. 
Another example is an interoperability of metadata registries where crossing of 
boundaries between different information contexts is required. 

For such areas, according to the approach, the application domain model 
is to be defined by the experts in the field independently of potentially relevant 
information sources. This model may include specifications of data structures, 
                                           

1 This research has been partially supported by the grant of the Russian Foundations for Basic Re-
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terminologies (thesauri), concepts (ontologies), methods applicable to data, 
processes (workflows) characteristic for the domain. These definitions constitute 
specification of a subject mediator. After subject mediator had been specified, 
information providers can disseminate their information for integration in the 
subject domain independently of each other and at any time. To disseminate 
they should register their information sources at the subject mediator. Users may 
not know anything about the registration process and about the sources that have 
been registered. Users should know only subject domain definitions that contain 
concepts, structures, methods approved by the subject domain community. Thus 
various information sources belonging to different providers can be registered at 
a mediator.  

The subject mediation approach is applicable to various subject domains 
in science, cultural heritage, mass media, e-commerce, etc. This technology is 
contrasted with the widely used general purpose Web search engines character-
ized by very low precision of search due to uncontrollable use of terms for in-
dexing and search. This is unavoidable payment for simplicity of sites “registra-
tion” at the Web. 

Local as View (LAV) mediator architecture [5] is assumed as a basis for 
the subject mediation. According to LAV, schemas exported by sources are 
taken as materialized views over virtual classes of the mediated schema. Queries 
are expressed in terms of the mediated schema. The LAV architecture is de-
signed to cope with a dynamic, possibly incomplete set of sources. Sources may 
change their exported schemas, become unavailable from time to time. LAV is 
potentially scalable with respect to a number of sources involved.  

Two separate phases of the subject mediator functioning are distin-
guished: consolidation phase and operational phase. Consolidation phase is in-
tended for the subject model definition. During this phase the mediator's schema 
metainformation is formed. During operational phase the burden of the sources 
registration process is imposed on the information providers. They formulate 
sources' specifications (schemas, concept definitions, vocabularies) in terms of 
the subject mediator's metainformation. In process of registration the local 
metainformation sublayer of the mediator is formed expressing source schemas 
in the mediator's canonical model as views above the mediator schema. Manag-
ing source registration concurrently by providers is the way to reach the media-
tor's scalability. 

In [3] methods and tools required to support information source registra-
tion process at the mediator are presented. For the LAV mediation strategy, [3] 
considers information source registration as the process of compositional infor-
mation systems development [2]. Source metainformation definitions are treated 
as specifications of requirements and classes of the mediator level with the re-
lated metainformation – as specifications of pre-existing components. To get 
source classes definitions as views above the mediator level, facilities of specific 
method and tool [3] are applied. 
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Specifications of information sources and mediator specifications must be asso-
ciated with ontological contexts defining concepts of the respective subject ar-
eas. For the uniformity reasons, the ontological concepts are described by means 
of the mediator’s canonical model as type specifications. Ontological concepts 
are also described with their verbal definitions similar to definitions of words in 
an explanatory dictionary. Verbal definitions are required for establishing pre-
liminary semantic relationships between concepts. Several kinds of semantic re-
lationships (positive, hyponym/hypernym) can be discovered between ontologi-
cal concepts as fuzzy ones. 

To contextualize information sources at the mediator during their regis-
tration, it is required to map local ontological contexts of the sources into the 
mediator’s ontology. Fuzzy relationships between concepts of different contexts 
are established by calculating correlation coefficients between concepts on the 
basis of their verbal definitions. The correlation coefficients are calculated using 
the vector-space approach [10]. This technique of the ontological composition 
(loose ontological integration) provides for establishing fuzzy correlation be-
tween related concepts [13]. Another technique (tight ontological integration) 
consists in composition of ontological modules using complete specifications of 
concepts as type definitions. 

In [7] the GIMP protocol (GIMP – Generalized Intermediator Protocol) 
supporting registration of an information source at a mediator is considered. A 
subset of OAI protocol [11] is used during registration to exchange metainfor-
mation uniformly represented in the canonical model of the intermediator 
framework. According to GIMP, a canonical schema is organized in modules, 
each of them containing all subject mediator specifications of one of the follow-
ing kinds: structural specifications (definitions of subject mediator types and 
classes), ontological specifications, thesaurus specifications, classifier specifica-
tions, etc. For each kind of metainformation format, an XML-oriented definition 
and a respective namespace are provided. In terms of OAI, a subject mediator 
can disseminate metainformation in multiple formats mentioned. After obtaining 
the required specifications from the mediator, the provider contextualizes its 
source metainformation in the mediator’s context, maps local source structural 
definitions into the canonical model and constructs representation of local 
classes in terms of the mediator’s classes. The results of the registration are 
formed as a local source schema expressed in terms of the canonical model with 
the appropriate terminological, structural and ontological links to the respective 
components of the mediator schema. Mediator takes registration information 
from the provider to complete the registration. 

One of the main difficulties of the tight ontological integration in frame 
of GIMP consists in reconciling of different ontological models in the mediator 
and information sources. This problem is discussed in this paper in details re-
garding contextualization of the Web information sources in the subject media-
tor as an example. Basic model considered now for the Semantic Web is a Web 
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ontology language which can formally describe the semantics of classes and 
properties used in Web documents. DAML+OIL has been submitted to W3C as 
a candidate for the Web ontology language [1,4]. Ontologies are intended to im-
prove existing Web-based applications and may enable new uses of the Web. 
DAML+OIL builds on earlier W3C standards such as RDF and RDF Schema, 
and extends these languages with richer modeling primitives. In the mediator 
considered here the SYNTHESIS language [6] is used for the canonical model-
ing. This is a hybrid object-oriented and semi-structured data model with a logic 
capability. To make registration of a Web source at the mediator possible, a re-
versible mapping of the Web ontology language into the mediator ontological 
model is required. Under this condition, applying the GIMP protocol, transfor-
mation of the mediator ontological specifications into DAML+OIL becomes 
possible and after contextualization made in DAML+OIL model, the result is 
transformed to the mediator representation and is returned back to the mediator.  

Since the registration is done by providers in their native environments, 
DAML+OIL capabilities can be applied using methods of proving structural 
subsumption and satisfiability of concepts after mapping of the mediator ADT 
concept specifications into DAML+OIL. Proof of a subsumption of 
DAML+OIL classes implies subtyping relationship of the respective ADTs after 
the reverse mapping of DAML+OIL into the canonical mediator model. 

The paper presents in the subsequent sections a reversible mapping of 
DAML+OIL into the mediator ontological model the core of which is defined as 
the SYNTHESIS language subset. An extension of this core having equal to 
DAML+OIL expressive power is introduced showing mapping of DAML+OIL 
into such extension. Reverse mapping of the resulted MOL into DAML+OIL is 
presented in the next section showing that the mapping commutes. A correspon-
dence between DAML+OIL, MOL constructs and Description Logic is summa-
rized in the table given in Appendix.  
The knowledge of DAML+OIL [1, 4] by readers is assumed. 
 

2 Mediator’s Ontological Framework 
 

The mediator’s ontological framework introduced here is based on the 
following considerations. For different information sources different ontological 
models (languages) can be used to define their ontologies. At the consolidation 
phase a concrete mediator ontological model is to be chosen (constructed) for 
the definition of the ontology of a specific subject domain. Different models 
may be required for different domains. Here we assume that the core of the me-
diator ontological language is defined as a subset of the mediator canonical 
model. Various approaches for construction of subject domain-oriented onto-
logical models can be designed. For instance, such model can be developed 
based on a prediction of a set M of ontological models that are used for the 
sources potentially relevant to the mediator subject domain. In this case the me-
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diator model can be constructed as a union of extensions of the MOL core 
equivalent to each of the model in M. 

During operational phase, to make tight ontological integration possible, 
each source ontological model should be mapped into the MOL. It is well 
known that each such mapping should be formed as an extension of the MOL 
core having equal capabilities with the source model [9]. 

Due to the above, the following ontological language framework for the 
mediator is assumed.  To construct various ontological models, a core of MOL 
is defined as a subset of the mediator canonical model. The main constituent to 
be defined in the model is a concept. A concept is an entity of knowledge repre-
sentation that reflects characteristics of all similar objects of real world that 
could exist in a given subject domain. In terms of the canonical model of a me-
diator a concept is natural to define as an abstract data type (ADT). ADT in the 
mediator canonical model (SYNTHESIS [6]) is an object-oriented notion ap-
plied for modeling of any kind of real-world entities. As ADT, a concept may be 
characterized by subtyping relationship forming concept hierarchy.  Attributes, 
relationships, invariants can be imposed on instances of ADT. 

Besides ADT, an ontological concept specification can contain its verbal 
description expressing the concept meaning in a subject domain. Verbal descrip-
tion is a natural-language definition of a concept, which may be used during reg-
istration for preliminary interrelating of mediator concepts with concepts from 
different source ontologies. For this purpose descriptor lists for concepts are 
taken from their verbal definitions to apply weighted vector-space concept simi-
larity (hierarchy) evaluation method [10]. Descriptor list of a concept consists of 
lexical units characterizing given concept. 

Using verbal description, between two concepts one of several kinds of 
semantic relationships can be established (such as positive and hypernym rela-
tionships). These relationships are treated as fuzzy ones. Using properties of the 
respective relations (e.g., transitivity) it is possible to infer concept relationships 
that are not represented directly. During the process of source registration at the 
mediator, loose integration of the source ontology with that of the mediator is 
applied [13] to establish verbal-based fuzzy relationships between concepts. 

Tight ontology integration based on concept definitions as ADT is used 
during registration process for more precise reconciliation of a source ontologi-
cal context with that of the subject mediator. Semantic relationships deduced 
from the verbal definitions of the concepts provide an intuition to look for their 
more sound interpretation. For instance, a positive verbal concept relationship 
assumes that equivalence of respective concept ADT specifications is expected. 
Hyponym/hypernym relationship assumes that subtyping of respective concepts 
is expected. 

The MOL core provides only hierarchical relationship between the con-
cepts. All other relationships and constraints are provided in core extensions. 
Each extension together with the core is equal in its capabilities to a specific 
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(source) ontological model. More details on the MOL core and constructing the 
extensions are provided in the following sections. 
 

3 Mediator Ontological Language: the Core 
 

3.1 General Features of the SYNTHESIS Language 
 
For the canonical model of a mediator the SYNTHESIS language has 

been chosen [6]. This language uses a hybrid semi-structured/object data model 
[8]. The canonical model considered provides support of wide range of data - 
from untyped data on one end of the range to strictly typed data on another. Self-
descriptive, semi-structured data are represented as frames that are used as sym-
bolic models of some entities or concepts. The language uses frames to describe 
any entity, including the entities of the language itself, such as types, classes, 
functions, assertions. A frame at any moment of its life cycle can be declared be-
longing to an admissible class (class is a collection of typed objects). At that 
moment the frame becomes an object. 

Typed data should conform to abstract data types (ADT) prescribing be-
haviour of their instances by means of the type's operations. ADT describes an 
interface of a type whose signature defines names and types of its operations. 
State-based attributes of ADT are defined with a shorthand: <attribute 
name>: <type>. Type invariants (constraints expressed as closed logic for-
mulae) can be included into the type definition. Besides ADT, the language con-
tains also a comprehensive collection of built-in datatypes. Subtyping relation 
over a collection of ADT forms a lattice with Taval as a root and Tnone as a 
bottom of the lattice. 

Types in the language are objects themselves. The multilevel type sys-
tem of the language is organized as follows. On the level of types the type ob-
jects are located providing for definition of concrete and generic types. On the 
second level (the level of "types of types") the metatype objects are located that 
include as their instances the types of the first level. On the third level the 
metatypes objects are located that include the metatypes of the second level as 
their instances, and so forth. Thus the multilevel type system sets a classification 
relationship on types that is orthogonal to the subtype relationship. 

Metatypes behave like (meta)classes that in their turn are organized as 
follows. A class specification combines information about two kinds of objects: 
about a class as an object itself and about objects - instances of the class. Gener-
ally metaclasses provide for introducing of generic concepts and of common at-
tributes (or of their categories) for similar classes, for introducing of common 
consistency constraints and deductive rules for such classes and their attributes. 
Metaclasses provide for proper grouping of application domain information and 
for proper differentiation of various application domains. 
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In the language the attribute specifications of objects may be treated in 
their turn also as types of association objects establishing a correspondence be-
tween a set of objects in an association domain and a set of objects in an associa-
tion range. Thus a specification of a type attribute may be considered as a speci-
fication of an association type. 
 

3.2 The Core of the Mediator Ontology Language 
 
A subset of the mediator’s canonical model (the Core of the Mediator 

Ontology Language (MOL)) sufficient for constructing extensions equivalent to 
various ontological models is characterized in more details. Only small subset of 
the SYNTHESIS ADT specification is included with state-based attributes and 
invariants. ADT specifications are syntactically represented by frames, their at-
tributes – by slots of the frames. Additional information related to attributes can 
be included into metaslots. Syntactically frames are included into figure brackets 
{ and }, slots are represented as pairs <slot name>:<slot value> (a 
frame in its turn can be used as a slot value), slots in a frame are separated by 
semi-colons. Metaslots (that are represented by frames) are written immediately 
after the slots to which they are related. 

Invariants are expressed using formulae of the SYNTHESIS object cal-
culus. To specify formulae, a variant of a typed (multisorted) first order predi-
cate logic language is used. Every predicate, constant and variable in formulae is 
typed. Predicates in formulae correspond to types or their Boolean combinations 
(expressed with & (intersection), | (union), ^ (complement)). Variables and 
constants are used as terms. Each term has a well-defined type. Explicitly typed 
variables are denoted as <identifier>/<type>. 

Throughout the paper we use an example of ontology presented in [1]. 
This ontology uses classes: Animal, Male, Female, Man, Woman, 
Person,  properties:  hasParent,  hasFather,  hasMother,   
hasSpouse, hasOccupation,  class elements DisjointWith, Dis-
jointUnionOf, and properties restrictions. In the first part of the paper we 
show how an extension of the MOL core can be constructed with the same 
meaning as DAML+OIL. Later we show how the constructed model can be 
mapped back to DAML+OIL getting specifications similar to those that can be 
found in [1]. Please, note that all examples presented in the paper are pieces of 
one and the same ontology expressed in two different languages. 
 
{Animal;                                                   (1) 
 in: type, daml_oil; 
 hasParent:  Animal; 
    metaslot 
       in: HasParent 
    end 
 hasFather:  Male; 
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    metaslot 
       in: HasFather 
    end 
 hasMother:  Female; 
    metaslot 
       in: HasMother; 
    end 
 hasMom:  Female; 
    metaslot 
       in: HasMother 
    end 
 age: integer; 
    metaslot 
       in: Age 
    end 
 sameAs: {in: invariant, samePropertyAs, 
    {{ all a/Animal ( hasMother(a) = HasMom(a) }}} 
}; 
{Male;                                                     (2) 
 in: type, daml_oil; 
 supertype: Animal 
}; 
{Female;                                                   (3) 
 in: type, daml_oil; 
 supertype: Animal; 
 disjoint: {in: invariant, disjointWith, 
    {{Male(a/Animal) & Female(a/Animal) = {} }}} 
}; 

(1) defines a type Animal. type, daml_oil, invariant, 
sameProperyAs are names of built-in metatypes. Attributes of Animal be-
long to association metatypes defined in the sequel. sameAs is a type invariant 
expressing semantics of sameProperyAs of DAML+OIL. Formulae in in-
variants are put into double figure brackets. (2), (3) are subtypes of Animal 
that correspond to the respective class elements in DAML+OIL example. 

Treating of an object attribute as an association motivates an introduc-
tion of association metatypes establishing properties of such association types. It 
is said that an object attribute (as an association) belongs to a particular attribute 
category that is explicitly introduced by an association metatype. Association 
metatypes (or categories) are built-in or user defined. 

User-defined association metatype is structured for our limited purpose 
as follows. Association metatype names (for direct and inverse associations) are 
used for category names of type attributes. An association type is defined in an 
instance_section of an association metatype. In an association type speci-
fication two pre-defined attributes domain and range can be given. Otherwise 
domain and (or) range of an association metatype are not restricted. 

An association type (as a type of binary relation) is set by an attribute 
association_type. If an association R is defined on a domain C1 and a 
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range C2 then the bounds (pairs of positive integers) define the following. The 
first bound gives for any object c1 of C1 an admissible range (minimal and 
maximal value) of a number of different objects c2 of C2 such that {<c1,c2>} be-
longs to R. The  second bound for any c2 of C2 gives a minimal and maximal 
value of a number of objects c1 of C1 such that {<c2,c1>} belongs to an associa-
tion inverse to R. inf is a constant denoting an arbitrary positive integer. Sub-
typing relation can be established on association metatypes. 
 
{HasParent;                                                (4) 
 in: metatype, association, daml_oil; 
 inverse: HasChild; 
 instance_section:  
 {domain: Animal; 
  range: Animal} 
}; 
{HasFather;                                                (5) 
 in: metatype, association, daml_oil; 
 superclass: HasParent;  
 instance_section:  
 {domain: Animal; 
  range: Male} 
}; 
{HasFatherCard;                                            (6) 
 in: metatype, association, daml_oil;   
 superclass: HasFather; 
 instance_section:  
 {domain: Animal; 
  range:Male; 
  association_type: {{1,1},{0,inf}}; 
     metaslot 
        in: onProperty, cardinality, UniqueProperty, 
     end} 
}; 
{HasMother;                                                (7) 
 in: metatype, association, daml_oil;    
 superclass: HasParent;   
 instance_section:  
 {domain: Animal; 
  range: Female} 
}; 
(4) – (7) are association metatypes defining features of type attributes (treated as 
properties in DAML+OIL). Domain, range and association type can be defined. 
Slot inverse defines inverse association. (6) is a specialization of HasFather 
adding association type. This type is used to express partially a role of on-
Property cardinality restriction in DAML+OIL. 
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4 MOL core extension equivalent to DAML+OIL model  
 

We consider mapping of the object world of DAML+OIL [1,4] into 
MOL. Roughly the object world of DAML+OIL is mapped into MOL as fol-
lows: classes and restrictions are mapped into types, properties are mapped into 
type attributes (that may belong to certain association metatypes), individuals 
are mapped into frames. Before providing further details, new built-in SYN-
THESIS metatypes (induced by DAML+OIL) are introduced: 
• daml_oil: types and associations of ontology become instances of this 

metatype; 
• restriction: classifies types belonging to it as modeling restrictions of 

DAML+OIL; 
• disjointWith, disjointUnionOf, onProperty, toClass, 

hasValue, hasClass, cardinality, maxCardinality, 
minCardinality, cardinalityQ, maxCardinalityQ, min-
CardinalityQ, sameTypeAs, equivalentTo, sameProp-
ertyAs: metatypes to which invariants in type definitions can be associated. 
These invariants interpret respective DAML+OIL elements. 

 
Other extensions of the MOL core follow. 

 
4.1 Class Elements Interpretation 
 
Classes Thing, Nothing of DAML+OIL are mapped into Taval, 

Tnone types of MOL respectively. subClassOf <class-expression 
list> is mapped into supertype <type name list>. 
A type with name T in the type name list results of mapping of a class expres-
sion CE (this mapping is denoted for short CE>T; such double denotation will 
help explaining mapping of DAML+OIL constructs into MOL). For different 
cases of class expression (class name, enumeration type, property restriction, 
Boolean combination of class expressions) the mapping is denoted as: 
• a type name T resulting from a mapping of a class name C (denoted for short 

as C>T); 
• a name of the enumeration type - mapping of the DAML+OIL enumeration 

(denoted as E>EM); 
• a name of type T - mapping of the DAML+OIL property-restriction R (de-

noted as R>T); 
• a name T of a type defined by invariant showing that the set of admissible 

values of this type is equal to a  resulting set of a formula F. F is a result of 
mapping of Boolean combination Bexp of class expressions (denoted as 
Bexp>T:F). 
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A type corresponding to a class defined by a Boolean combination of 
class expressions look as follows: 
 
{TallMan;                                                  (8) 
 in: type, daml_oil;  
 inters: {in: invariant, Boolean_combination, 
    {{TallMan(a/Taval) = (Man(a/Taval) & 
TallThing(a/Taval))}}} 
}; 

disjointWith element asserting that C is disjoint with the class-
expression CE in the element (i.e. C must have no instances in common with it) 
is mapped into the invariant (example (3)): 
I: {in: invariant, disjointWith, {{(C>T1  & CE>T2  = {}) }}} 

disjointUnionOf element asserts that C has the same instances as 
the disjoint union of the class-expressions element (all of the classes defined by 
the class-expressions of a disjointUnionOf element must be pairwise dis-
joint). For two class expressions CE1 and CE2 the resulting invariant looks as: 
 
I: {in:predicate, invariant, disjointUnionOf, 
   {{(C>T = (CE1>T1 | CE2>T2)) & (CE1>T1 & CE2>T2 = {}) }}} 
 

Type Person (example 11) contains such an invariant. Types Man, 
Woman, Person correspond to the respective class elements in DAML+OIL 
ontology example [1]. 
 
{Man;                                                      (9) 
 in: type, daml_oil; 
 supertype: Person, Male 
}; 
{Woman;                                                   (10) 
 in: type, daml_oil; 
 supertype: Person, Female 
}; 
{Person;                                                  (11) 
 in: type, daml_oil; 
 supertype: R_Person; 
 hasSpouse: Person; 
    metaslot 
       in: HasSpouse;     
    {comment; if hasSpouse would be defined as 
     in:HasSpouseMarried then this would be a definition 
     of the married person concept} 
    end 
 hasOccupation: FullTimeOccupation; 
    metaslot 
       in: HasOccupation 
    end 
 dunion: {in: invariant, disjointUnionOf 
    {{(Person(p/Person) = (Man(p/Person) | Woman(p/Person))) & 
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      (Man(p/Person) & Woman(p/Person) = {}) }}}                         
}; 
 

In this type definition we assume: 
 
{HasSpouse;                                               (12) 
 in: metatype, association, daml_oil; 
 instance_section: 
 {domain: Person; 
  range: Person; 
  association_type: {{0,1},{0,1}} 
     metaslot 
        in: onProperty, maxCardinality 
     end} 
}; 
{HasSpouseMarried;                                        (13) 
 in: metatype, association, daml_oil; 
 superclass: HasSpouse; 
 instance_section: 
 {domain: Person; 
  range: Person; 
  association_type: {{1,1},{1,1}} 
     metaslot 
        in:onProperty, Cardinality 
     end} 
}; 
{HasOccupation;                                           (14) 
 in: metatype, association, daml_oil; 
 instance_section: 
 {domain: Person; 
  range: FullTimeOccupation; 
  association_type: {{0,1},{0,inf}} 
     metaslot 
        in: onProperty, Cardinality0 
     end} 
}; 

sameClassAs element asserts that C is equivalent to the class-
expression in the element. The resulting invariant (for equivalentTo ele-
ment the invariant is similar) looks as: 
 
I: {in: invariant, sameClassAs, {{(C>T1 = CE>T2)}}} 
 

HumanBeing concept is the same as Person: 
 
{HumanBeing;                                              (15) 
 in: type, daml_oil; 
 supertype: Person; 
 sameTypeAs: {in: invariant, sameClassAs 
    {{all p/Person (HumanBeing(p) = Person(p)) }}} 
}; 
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4.2 Property Restrictions Interpretation 
 
A property restriction is a special kind of class expression in 

DAML+OIL. It implicitly defines an anonymous class, namely the class of all 
objects that satisfy the restriction. A restriction is mapped into a subtype of a 
property domain type. 

daml:toClass element defines the class of all objects for whom the 
values of property P all belong to the class expression. In other words, it defines 
the class of object x for which it holds that if the pair (x,y) is an instance of P, 
then y is an instance of the class-expression CE>T or datatype. The following 
invariant in a subtype ST of a property domain type is included: 
 
I: {in: invariant, onProperty, toClass, 
   {{all x (ST(x) & (P(x) ⊆ CE>T))}}} 
 
Type R_Person is a subtype of Animal. Parents of R_Person instances 
should be Persons. 
 
{R_Person;                                                (16) 
 in: type, daml_oil, restriction; 
 supertype: Animal; 
 hp: {in: invariant, onProperty, toClass, 
    {{all ap (R_Person(ap) &  hasParent(ap) <= Person) }}}; 
 hasFather: Male; 
    metaslot 
       in: HasFatherCard 
    end 
}; 

daml:hasValue element defines the class of all objects for whom the 
property P has at least one value equal to the named object or datatype value 
(and perhaps other values as well). In other words, if we call the instance y, then 
it defines the class of objects x for which (x,y) is an instance of P. The following 
invariant in a subtype ST of a property domain type is included: 
 
I: {in: invariant, onProperty, hasValue, 
   {{all x (ST(x) & y∈P(x)) }}} 
 

daml:hasClass element defines the class of all objects for which at 
least one value of the property P is a member of the class expression or datatype. 
In other words, it defines the class of objects x for which there is at least one in-
stance y of the class-expression CE or datatype such that (x,y) is an instance of 
P. The following invariant in a subtype ST of a property domain type is in-
cluded: 
 
I: {in: invariant, onProperty, hasClass, 
   {{all x (ST(x) & ex y (P(x,y) & CE>T(y))) }}} 
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4.3 Cardinality Constraints Interpretation 
 
daml:cardinality element. This defines the class of all objects that 

have exactly N distinct values for the property P, i.e. x is an instance of the de-
fined class if and only if there are N distinct values y such that (x,y) is an in-
stance of P. For property P an association metatype is defined with an associa-
tion type specified as: 
 
association_type: {{N,N},{?,?}} 
 

HasFatherCard (example 6) and HasSpouseMarried (example 
13) are of this association type. 

daml:maxCardinality element. This defines the class of all objects 
that have at most N distinct values for the property P. For property P an associa-
tion metatype is defined with an association type specified as:  
 
association_type: {{0,N},{?,?}} 
 

HasSpouse (example 12) is of this association type. 
daml:minCardinality element. This defines the class of all objects 

that have at least N distinct values for the property P. For property P an associa-
tion metatype is defined with an association type specified as:  
 
association_type: {{N,inf},{?,?}} 
 

daml:cardinalityQ element defines the class C of all objects that 
have exactly N distinct values for the property P that are instances of the class 
expression CE or datatype (and possibly other values not belonging to the class 
expression or datatype). In other words: x is an instance of the defined class (x 
satisfies the restriction) if and only if there are exactly N distinct values y such 
that (x,y) is an instance of P and y is an instance of the class expression or 
datatype. For property P an association metatype is defined with an instance 
type defined as: 
 
{domain: C>T1; 
 range: CE>T2; 
 association_type: {{N,N},{?,?}}; 
    metaslot 
       in: onProperty, cardinalityQ 
    end } 
 

This is the same as: 
 
I: {in: invariant, onProperty, cardinalityQ, 
   {{all x(C>T1(x) & count (P(x) & CE>T2)  = N) }}} 
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daml:maxCardinalityQ element. This defines the class C of all ob-

jects that have at most N distinct values for the property P that are instances of 
the class expression CE or datatype (and possibly other values not belonging to 
the class expression or datatype). For property P an association metatype is de-
fined with an instance type defined as (example 14): 
 
{domain: C>T1 ; 
 range: CE>T2; 
 association_type: {{0,N},{?,?}}; 
    metaslot 
       in: onProperty, CardinalityQ 
    end} 
 

daml:minCardinalityQ element. This defines the class C of all ob-
jects that have at least N distinct values for the property P that are instances of 
the class expression CE or datatype (and possibly other values not belonging to 
the class expression or datatype). For property P an association metatype is de-
fined with an instance type defined as: 
 
{domain: C>T1 ; 
 range: CE>T2; 
 association_type: {{N,inf},{?,?}}; 
    metaslot 
       in: onProperty, CardinalityQ 
    end} 
 

We have considered mostly the object world of DAML+OIL so far. 
Datatype world is treated similarly. XML Schema datatypes are mapped into 
SYNTHESIS built-in or abstract types. Datatype values get adequate representa-
tion in SYNTHESIS. For instance, age attribute of Animal (example 1) is of 
datatype integer. A property restriction based on such type is expressed as a 
type: 
 
{Adult;                                                   (17) 
 in: type, daml_oil, restriction; 
 supertype: Person; 
 adultage : {in: invariant, onProperty, hasClass, 
    {{all p (Adult(p) & age(p) > 17) }}} 
}; 
 

5 Reverse Mapping of the MOL obtained into DAML+OIL 
 

The intention of this section is to show that the extended MOL specifica-
tions contain enough information to map them into DAML+OIL definitions pre-
serving original meaning. General rules for such reverse mapping are the follow-
ing: 
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• MOL type that does not belong to restriction metatype is mapped into 
DAML+OIL class (subclass). Type invariants belonging to disjoint-
With, disjointUnionOf, sameClassAs metatypes are mapped 
into the respective elements of the resulting class definition.   

• MOL type attributes together with the semantics introduced by the related 
association metatypes are mapped into DAML+OIL properties (subproper-
ties).  

• MOL type that belongs to restriction metatype is mapped into DAML+OIL 
restriction. In such cases invariants of MOL type belonging to metatypes 
toClass, hasValue, hasClass are mapped into the respective ele-
ments of the resulting restriction.  

• MOL type attributes P of a type C>T defined in an association metatype hav-
ing association types related to onProperty metatype are mapped into 
cardinality or cardinalityQ property restriction of a class C.  

Due to the fact that element definitions in DAML+OIL have a form of 
various clichés in RDF, to generate a DAML+OIL definition for the cases 1 – 4 
above it is required to extract from the MOL specifications the required parame-
ters and to insert them into the appropriate positions of the respective 
DAML+OIL cliché. This process is illustrated with the following examples: 
 

Case 1. For Female type (example 3) the following class definition will 
be generated: 
 
<daml:Class rdf:ID="Female"> 
   <rdfs:subClassOf rdf:resource="#Animal"/> 
   <daml:disjointWith rdf:resource="#Male"/> 
</daml:Class> 
 

Case 2. For hasFather attribute of Animal  type  (example 1)  the 
following property definition will be generated: 
 
<daml:ObjectProperty rdf:ID="hasFather"> 
   <rdfs:subPropertyOf rdf:resource="#hasParent"/> 
   <rdfs:range rdf:resource="#Male"/> 
</daml:ObjectProperty> 
  

Case 3. For R_Person type (example 16) the following restrictions will 
be generated (toClass and cardinality restrictions, the latter is related to 
the Case 4): 
 
<daml:Class rdf:about="#Person"> 
   <rdfs:subClassOf> 
      <daml:Restriction> 
         <daml:onProperty rdf:resource="#hasParent"/> 
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         <daml:toClass rdf:resource="#Person"/> 
      </daml:Restriction> 
   </rdfs:subClassOf> 
   <rdfs:subClassOf> 
      <daml:Restriction daml:cardinality="1"> 
         <daml:onProperty rdf:resource="#hasFather"/> 
      </daml:Restriction> 
   </rdfs:subClassOf> 
</daml:Class> 
 

Case 4. For hasOccupation attribute of Person type (example 11) 
specifying  cardinalityQ  restriction  the  following  definition  will  be 
generated: 
 
<daml:Class rdf:about="#Person"> 
   <rdfs:subClassOf> 
      <daml:Restriction daml:maxCardinalityQ="1"> 
         <daml:onProperty rdf:resource="#hasOccupation"/> 
         <daml:hasClassQ rdf:resource="#FullTimeOccupation"/> 
      </daml:Restriction> 
   </rdfs:subClassOf> 
</daml:Class> 
 

Difficulties arise with reversible mapping of MOL constants to XML 
Schema datatype instances. DAML+OIL requires introduction of constants and 
types of the following syntax (a type like that is to be produced for example 17): 
 
rdf:resource=http://www.w3.org/TR/2001/NOTE-daml+oil-walkthru-
20011218/daml+oil-ex-dt#over17 
 

Such definitions cannot be mapped reversibly without providing of a 
specific normalized procedure of forming such specifications. 
 

6 Related work 
 

Ontolingua [12] provides maintaining of ontologies with multiple repre-
sentation languages to port from system to system. In contrast, the proposed ap-
proach is focused on compositions of ontologies with multiple representation 
languages in a mediator context. 

[9] presents an approach for development of commutative data model 
mappings in process of design of heterogeneous database integration systems. 
The method introduced provides for constructing canonical data model kernel 
extensions equivalent to various source data models. The method is based on the 
data model axiomatic extension principle. The canonical data model in the inte-
grating system should be extensible while new source data models are inte-
grated. Such extension is implemented axiomatically - by adding to the data 



 116

definition language of a set of axioms determining (in terms of the canonical 
model) of logical dependencies of the source data model. The result of the ex-
tension is proved to be equivalent to the source data model. 

Similarly, reversible ontological model mapping technique proposed 
here applies the axiomatic extension principle to the ontologies (Section 3). 
 Reversible data model mappings methods are considered in [14]  focusing on 
the need for formal interpretation in which it becomes possible to transform da-
tabases between different data models. 
 

7 Conclusion 
 

The paper discusses ontological modeling framework issues in the me-
diation environment. For different information sources different ontological 
models (languages) can be used to define their ontologies. Different ontological 
models can be required for appropriate modeling of different subject domains. 
How the mediator ontological language (MOL) should be positioned w.r.t. such 
modeling variety is analyzed in the paper.  

It is assumed that the core of MOL is defined as a subset of the mediator 
canonical model. Based on such core, one and the same procedure is required to 
design MOL for a specific domain as well as to map a source ontological model 
into MOL. This procedure consists in development of the extension of the MOL 
core equivalent to a given ontological model. 

An approach for such reversible mapping construction is demonstrated 
for a class of the Web information sources. It is assumed that such sources apply 
the DAML+OIL ontological model. A subset of the hybrid object-oriented and 
semi-structured canonical mediator data model is used for the core of MOL. 
Construction of a reversible mapping of DAML+OIL into an extension of the 
core of MOL is presented in the paper. Such mapping is a necessary pre-
requisite for contextualizing and registration of information sources at the me-
diator. The mapping shows how a problem of reconciling of non-compatible on-
tology modeling languages of the mediator and of heterogeneous information 
sources can be solved.  

The approach proposed is applicable to heterogeneous ontological mod-
els integration in various subject domains. Such integration may be required in 
digital libraries where retrieval is based on the information content, rather than 
on information entities, or where an interoperability of metadata registries is re-
quired to cross the boundaries between different information contexts, etc. 
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Appendix 
 

A correspondence between DAML+OIL and MOL constructs is summa-
rized in the following table. To show DAML+OIL element semantics, equiva-
lent Description Logic (DL) encoding is represented. 
 
DAML+OIL Element 
(and DL expression) 

DAML+OIL RDF Encoding MOL specification 

Nothing (⊥) <daml:Nothing/> Tnone 

Thing (⊤) <daml:Thing/> Taval 
class (C) <daml:Class rdf:ID=”C”/> {C; in: type } 
individual (I) <daml:Thing rdf:ID=”I”/> {I; in: frame } 
property (P) <daml:ObjectProperty rdf:ID="P"/> {P; in: association, metatype, daml_oil; } 
domain <rdfs:domain rdf:resource = "#C"/> domain: C; 
range <rdfs:range rdf:resource = "#C"/> range: C; 
intersectionOf (C1⊓C2) <daml:intersectionOf rdf:parseType = 

"daml:collection"> 
   <daml:Class rdf:about="#C1"/> 
   <daml:Class rdf:about="#C2"/> 
</daml:intersectionOf> 

I: {in:predicate, invariant, intersectionOf 
   {{C3(a/Taval) = 
      C1(a/Taval) & C2(a/Taval)}} } 

unionOf (C1⊔C2) <daml:unionOf rdf:parseType= 
"daml:collection"> 
   <daml:Class rdf:about="#C1"/> 
   <daml:Class rdf:about="#C2"/> 
</daml:intersectionOf> 

I: {in:predicate, invariant, unionOf 
   {{C3(p/C3) = C1(p/C3) | C2(p/C3)}} } 
 

complementOf (¬C) <daml:complementOf rdf:resource="#C"/> I: {in:predicate, invariant, ComplementOf 
   {{C1(p/C1)=^C(p/C)}} } 

oneOf ( {x1…xn} ) <daml:oneOf parseType = 
"daml:collection"> 
   <daml:Thing rdf:about = "#x1"/> 
   <daml:Thing rdf:about = "#xn"/> 
</oneOf> 

{enum; enum_list: x1,… xn} 

toClass (∀R.C) <daml:Restriction> 
   <daml:onProperty rdf:resource="#R"/> 
   <daml:toClass rdf:resource="#C"/> 
</daml:Restriction> 

I: {in: invariant, onProperty, toClass, 
   {{all x (C1(x) & (R(x,y) ⊆ C(y)))}}} 

hasClass (∃R.C) <daml:Restriction> 
   <daml:onProperty rdf:resource="#R"/> 
   <daml:hasClass rdf:resource="#C"/> 
</daml:Restriction> 

I: {in: invariant, onProperty, hasClass, 
   {{all x (C1(x) & ex y (P(x,y) & C(y)))}}} 

hasValue (∃R.{x}) <daml:Restriction> 
   <daml:onProperty rdf:resource="#R"/> 
   <daml:hasValue rdf:resource="#x"/> 
</daml:Restriction> 

I: {in: invariant, onProperty, hasValue, 
   {{all y (C1(y) & x∈R(y))}} } 

minCardinalityQ 
(≥nR.C) 

<daml:Restriction 
daml:minCardinalityQ="n"> 
   <daml:onProperty rdf:resource="#R"/> 
   <daml:hasClassQ rdf:resource="#C"/> 
</daml:Restriction> 

{domain: C1; 
  range: C; 
  association_type: {{n,inf},{?,?}}; 
     metaslot 
        in: onProperty, minCardinalityQ 
     end} 

minCardinality (≥nR) <daml:Restriction> 
   <daml:onProperty rdf:resource="#R"/> 
   <daml:minCardinality>n 
</daml:minCardinality> 
</daml:Restriction> 

association_type: {{n,inf},{?,?}} 

maxCardinalityQ 
(≤nR.C) 

<daml:Restriction 
daml:maxCardinalityQ="n"> 
   <daml:onProperty rdf:resource="#R"/> 
   <daml:hasClassQ rdf:resource="#C"/> 
</daml:Restriction> 

{domain: C1; 
  range: C; 
  association_type: {{0,n},{?,?}}; 
     metaslot 
        in: onProperty, maxCardinalityQ 
     end } 
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maxCardinality (≤nR) <daml:Restriction> 
   <daml:onProperty rdf:resource="#R"/> 
   <daml:minCardinality>n 
</daml:minCardinality> 
</daml:Restriction> 

association_type: {{0,n},{?,?}} 

cardinalityQ (=nR.C) <daml:Restriction daml:CardinalityQ="n"> 
   <daml:onProperty rdf:resource="#R"/> 
   <daml:hasClassQ rdf:resource="#C"/> 
</daml:Restriction> 

{domain: C1; 
  range: C; 
  association_type: {{n,n},{0,inf}} 
     metaslot 
        in: onProperty, CardinalityQ 
     end} 

cardinality (=nR) <daml:Restriction daml:cardinality="n"> 
   <daml:onProperty rdf:resource="#R"/> 
</daml:Restriction>   

association_type: {{n,n},{?,?}} 

subClassOf (C1 ⊑ C2) <rdfs:subClassOf rdf:resource="#C2"/> {C1; in: type; 
  supertype: C2} 

sameClassAs (C1 ≡ C2) <daml:sameClassAs rdf:resource="#C2"/> I: {in: invariant, sameClassAs, 
   {{(C1(x/C1) = C2(x)}}} 

subPropertyOf 
(P1 ⊑ P2) 

<rdfs:subPropertyOf rdf:resource="#P2"/> {P1; in: association, metatype; 
    superclass: P2 } 

samePropertyAs 
(P1 ≡ P2) 

<daml:samePropertyAs 
rdf:resource="#P2"/> 

I: {in: invariant, samePropertyAs, 
   {{(P1(x) = P2(x))}}} 

disjointWith  
(C1 ⊑¬ C2) 

<daml:disjointWith rdf:resource="#C2"/> disjoint: {in:predicate,  invariant, disjointWith, 
   {{C1(a/C3) & C2(a/C3) = {} }} } 

inverseOf (P1 ≡ P2-) <daml:inverseOf rdf:resource="#P2"/> inverse: P2; 
transitiveProperty 
(P+ ⊑ P) 

<daml:TransitiveProperty rdf:ID="P"/> metaslot 
   in: onProperty, transitiveProperty 
end 

uniqueProperty 
(⊤ ⊑≤1 P) 

<daml:UniqueProperty rdf:ID="P"> {association_type: {{1,1},{0,inf}}; 
  metaslot 
     in: onProperty, cardinality, UniqueProperty 
  end}} 

unambiguousProperty 
(⊤ ⊑≤1 P-) 

<daml: UnambiguousProperty rdf:ID="P"> metaslot 
   in: onProperty, unambigousProperty 
end 

disjointUnionOf 
(C1⊔ C2, 

⊥≡ C1 ⊓ C2) 

<daml:disjointUnionOf 
rdf:parseType="daml:collection"> 
   <daml:Class rdf:about="#C1"/> 
   <daml:Class rdf:about="#C2"/> 
</daml:disjointUnionOf> 

dunion: {in:predicate, invariant, disjointUn-
ionOf, 
   {{(C3(x/C3) = (C1(x/C3)|C2(x/C3))) & 
      (C1(x/C3)&C2(x/C3) = {}) }}} 

 


